, Volume 80, Issue 1, pp 1–20 | Cite as

Succession-driven changes in soil respiration following fire in black spruce stands of interior Alaska

  • Katherine P. O’Neill
  • Daniel D. Richter
  • Eric S. Kasischke


Boreal forests are highly susceptible to wildfire, and post-fire changes in soil temperature and moisture have the potential to transform large areas of the landscape from a net sink to a net source of carbon (C). Understanding the ecological controls that regulate these disturbance effects is critical to developing models of ecosystem response to changes in fire frequency and severity. This paper combines laboratory and field measurements along a chronosequence of burned black spruce stands into regression analyses and models that assess relationships between moss succession, soil microclimate, decomposition, and C source-sink dynamics. Results indicate that post-fire changes in temperature and substrate quality increased decomposition in humic materials by a factor of 3.0 to 4.0 in the first 7 years after fire. Bryophyte species exhibited a distinct successional pattern in the first five decades after fire that corresponded to decreased soil temperature and increased C accumulation in organic soils. Potential rates of C exchange in mosses were greatest in early successional species and declined as the stand matured. Residual sources of CO2 (those not attributed to moss respiration or humic decomposition) increased as a function of stand age, reflecting increased contributions from roots as the stand recovered from disturbance. Together, the field measurements, laboratory experiments, and models provide strong evidence that interactions between moss and plant succession, soil temperature, and soil moisture largely regulate C source-sink dynamics from black spruce systems in the first century following fire disturbance.


Boreal forests Carbon balance CO2 Decomposition Fire Microbial activity Moss 



non-microclimate driven changes in respiration


burned material


bulk density




control material


fibric decomposition


flux associated with a given incubation temperature


field CO2 flux


humic decomposition


moss respiration


temperature functions for respiration


residual sources of respiration




thickness of soil layer


water holding capacity


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auclair, A.N.D., Carter, T.B. 1993Forest wildfires as a recent source of CO2 at northern latitudesCan. J. For. Res.2315301536Google Scholar
  2. Black, R.A., Bliss, L.C. 1980Reproductive ecology of Picea mariana at treeline near Inuvik, Northwest Territories, CanadaEcol. Monogr.50331354CrossRefGoogle Scholar
  3. Bååth, E., Arnebrant, K. 1994Growth rate and response of bacterial communities to pH in limed and ash treated forest soilsSoil Biol. Biochem.269951001CrossRefGoogle Scholar
  4. Bond-Lamberty, B., Wang, C., Gower, S.T. 2004Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequenceGlob. Change Biol.10473487CrossRefGoogle Scholar
  5. Burke, R.A., Zepp, R.G., Tarr, M.A., Miller, W.M., Stocks, B.J. 1997Effect of fire on soil-atmosphere exchange of methane and carbon dioxide in Canadian boreal forest sitesJ. Geophys. Res.1022928929300CrossRefGoogle Scholar
  6. Christensen, T.R., Jonasson, S., Michelsen, A., Calaghan, T.V., Hastrom, M. 1998Environmental control on soil respiration in the Eurasian and Greenlandic ArcticJ. Geophys. Res.1032901529021CrossRefGoogle Scholar
  7. Clymo, R.S., Hayward, P.M. 1982The ecology of SphagnumSmith, A.J.E. eds. Bryophyte EcologyChapman and HallLondon229289Google Scholar
  8. Dixon, R.K., Brown, S., Houghton, R.A., Solomon, A.M., Trexler, M.C., Wisniewski, J. 1994Ecological Studies 63. Long-term Forest Dynamics of the Temperate Zone: A Case Study of Late-quaternary Forests in Eastern North AmericaSpringer-VerlagNew York 439Google Scholar
  9. Flanagan, P.W., Veum, A.K. 1974Relationships between respiration, weight loss, temperature and moisture in organic residues on tundraHolding, A.J.Heal, O.W.MacLean, S.F.,Jr.Flanagan, P.W. eds. Soil Organisms and Decomposition in TundraTundra Biome Steering CommitteeStockholm249277Google Scholar
  10. Flannigan, M.D., Logan, K.A., Amiro, B.D., Skinner, W.R., Stocks, B.J. 2005Future area burned in CanadaClimatic Change72116CrossRefGoogle Scholar
  11. Foster, D.R. 1985Vegetation development following fire in Picea mariana (black spruce)-Pleurozium forests of southeastern Labrador, CanadaJ. Ecol.73517534CrossRefGoogle Scholar
  12. Fritze, H., Pennanen, T., Pietkäinen, J. 1993Recovery of soil microbial biomass and activity from prescribed burningCan. J. For. Res.2312861290Google Scholar
  13. Gillett N.P., Weaver A.J., Zwiers F.W. and Flannigan M.D. 2004. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 31: L18211 1– 4. doi: 10.1029/2004Gh020876.Google Scholar
  14. Gorham, E. 1991Northern peatlands: role in the carbon cycle and probable responses to climate warmingEcol. Appl.1182195Google Scholar
  15. Goulden, M.L., Wofsy, S.C., Harden, J.W., Trumbore, S.E., Crill, P.M., Gower, S.T., Fries, T., Daube, B.C., Fan, S.M., Sutton, D.J., Bazzaz, A., Munger, J.W. 1998Sensitivity of boreal forest carbon to soil thawScience279214217CrossRefGoogle Scholar
  16. Gulledge, J., Schimel, J. 2000Controls on CO2 and CH4 fluxes across a mosaic of forest ecosystems in interior AlaskaEcosystems3269282CrossRefGoogle Scholar
  17. Harden, J.W., O’Neill, K.P., Trumbore, S.E., Veldhuis, H., Stocks, B.J. 1997Moss and soil contributions to the annual net carbon flux of a maturing boreal forestJ. Geophys. Res.1022880528816CrossRefGoogle Scholar
  18. Harden, J.W., Trumbore, S.E., Stocks, B.J., Hirsch, A., Gower, S.T., O’Neill, K.P., Kasischke, E.S. 2000The role of fire in the boreal carbon budgetGlob. Change Biol.6174184CrossRefGoogle Scholar
  19. Hicke, J.A., Asner, G.P., Kasischke, E.S., French, N.H.F., Randerson, J.T., Stocks, B.J., Tucker, C.J., Los, S.O., Field, C.B. 2003Post fire response of North American net primary productivity measured by satellite imageryGlob. Change Biol.911451157CrossRefGoogle Scholar
  20. Johnstone, J.F., Kasischke, E.S. 2005Stand-level effects of burn severity on post-fire regeneration in a recently burned black spruce forestCan J. For. Res.3521512163CrossRefGoogle Scholar
  21. Kasischke, E.S., O’Neill, K.P., French, N.H.F., Borgeau-Chavez, L.L. 2000Controls on patterns of biomass burning in Alaskan boreal forestsKasischke, E.S.Stocks, B.J. eds. FireClimate Changeand Carbon Cycling in the North American Boreal ForestSpringer-VerlagNew York173196Google Scholar
  22. Litvak, M., Miller, S., Wofsy, S.C., Goulden, M. 2003Effect of stand age on whole ecosystem CO2 exchange in the Canadian boreal forestJ. Geophys. Res.108WFX6-1WFX6-11CrossRefGoogle Scholar
  23. Longton, R.E. 1988Biology of Polar Bryophytes and LichensCambridge University PressCambridgeGoogle Scholar
  24. MacLean, D.A., Woodley, S.J., Weber, M.G., Wein, R.W. 1983Fire and nutrient cyclingWein, R.W.MacLean, D.A. eds. The Role of Fire in the Northern Circumpolar EcosystemJohn Wiley and SonsChichester, England11132Google Scholar
  25. Maikawa, E., Kershaw, K.A. 1976Studies on lichen-dominated systems. XIX. The post fire recovery sequence of black-spruce lichen woodland in the Abitau Lake RegionCan. J. Bot.5426792687CrossRefGoogle Scholar
  26. Mann, D.H., Fastie, C.L., Rowland, E.L., Bigelow, N.H. 1995Spruce succession, disturbanceand geomorphology on the Tanana River floodplain, AlaskaEcoscience2184195Google Scholar
  27. O’Neill K.P. 2000. Changes in carbon dynamics following wildfire in soils of interior Alaska. Ph.D. Thesis. Duke University, Durham, NC.Google Scholar
  28. O’Neill, K.P., Kasischke, E.S., Richter, D.D. 2002Environmental controls on soil CO2 efflux following fire in black sprucewhite spruceand aspen stands of interior AlaskaCan. J. For. Res.3215251541CrossRefGoogle Scholar
  29. O’Neill, K.P., Kasischke, E.S., Richter, D.D. 2003Seasonal and decadal patterns of soil carbon uptake and emission along an age-sequence of burned black spruce stands in interior AlaskaJ. Geophys. Res. Atmos.108815510.1029/2001JD000443CrossRefGoogle Scholar
  30. Pietikäinen, J., Fritze, H. 1996Soil microbial biomass: determination and reaction to burning and ash fertilizationGoldammer, J.G.Furyaev, V.V. eds. Fire in Ecosystems of Boreal EurasiaKluwer Academic PublishersThe Netherlands337349Google Scholar
  31. Pietikäinen, J., Hiukka, R., Fritze, H. 2000Does short-term heating of forest humus change its properties as a substrate for microbes?Soil Biol. Biochem.32277288CrossRefGoogle Scholar
  32. Rapalee, G., Trumbore, S.E., Davidson, E.A., Harden, J.W., Veldhuis, H. 1998Estimating soil carbon stocks and fluxes in a boreal forest landscapeGlobal Biogeochem. Cyc.12687701CrossRefGoogle Scholar
  33. Richter, D.D., O’Neill, K.P., Kasischke, E.S. 2000Stimulation of soil respiration in burned black spruce (Picea mariana L.) forest ecosystems: a hypothesisKasischke, E.S.Stocks, B.J. eds. FireClimate Changeand Carbon Cycling in the North American Boreal ForestSpringer-VerlagNew York164178Google Scholar
  34. Schlentner, R.E., Cleve, K. 1985Relationships between CO2 evolution from soil, substrate temperatureand substrate moisture in four mature forest types in interior AlaskaCan. J. For. Res.1597106Google Scholar
  35. Skre, O., Oechel, W.C. 1981Moss functioning in different taiga ecosystems in interior Alaska. I. Seasonal, phenotypic, and drought effects of photosynthesis and response patternsOecologia485059CrossRefGoogle Scholar
  36. Stocks, B.J., Fosberg, M.A., Wotton, M.B., Lynham, T.J., Ryan, K.C. 2000Climate change and forest fire activity in North American boreal forestsKasischke, E.S.Stocks, B.J. eds. FireClimate Changeand Carbon Cycling in the North American Boreal ForestSpringer-VerlagNew York312319Google Scholar
  37. Stocks, B.J., Fosberg, M.A., Lynham, T.J., Mearns, L., Wotton, B.M., Yang, Q., Jin, J.-Z., Lawrence, K., Hartley, G.R., Mason, J.A., McKenney, D.W. 1998Climate change and forest fire potential in Russian and Canadian boreal forestsClimatic Change38113CrossRefGoogle Scholar
  38. Cleve, K., Sprague, D. 1971Respiration rates in the forest floor of birch and aspen stands in interior AlaskaArc. Alp. Res.31726CrossRefGoogle Scholar
  39. Cleve, K., Yarie, J. 1986Interaction of temperaturemoistureand soil chemistry in controlling nutrient cycling and ecosystem development in the Alaskan taigaCleve, K.Chapin, F.S.,IIIFlanagan, P.Viereck, L.A.Dyrness, C.T. eds. Forest Ecosystems in the Alaskan TaigaSpringer-VerlagNew York160189Google Scholar
  40. Cleve, K., Oliver, L.K., Schlentner, P., Viereck, L.A., Dyrness, C.T. 1983Productivity and nutrient cycling in taiga forest ecosystemsCan. J. For. Res.13703720Google Scholar
  41. Viereck, L.A. 1975Forest ecology of the Alaskan taigaQuat. Res.3465495CrossRefGoogle Scholar
  42. Yarie, J., Billings, S. 2002Carbon balance of the taiga forest within Alaska: present and futureCan. J. For. Res.32757767CrossRefGoogle Scholar
  43. Zhuang, Q., McGuire, A.D., O’Neill, K.P., Harden, J.W., Romanovsky, V.E., Yarie, J. 2003Modeling soil thermal and carbon dynamics of a fire chronosequence in interior AlaskaJ. Geophys Res. Atmos.108FFR 3-1FFR 3-26Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Katherine P. O’Neill
    • 1
    • 2
  • Daniel D. Richter
    • 2
  • Eric S. Kasischke
    • 3
  1. 1.USDA Agricultural Research Service, Appalachian Farming Systems Research CenterBeaverUSA
  2. 2.Nicholas School of the Environment and Earth SciencesDuke UniversityDurhamUSA
  3. 3.Department of GeographyUniversity of MarylandUSA

Personalised recommendations