, Volume 78, Issue 2, pp 217–246 | Cite as

Solute Sources in Stream Water during Consecutive Fall Storms in a Northern Hardwood Forest Watershed: A Combined Hydrological, Chemical and Isotopic Approach

  • M. J. Mitchell
  • K. B. Piatek
  • S. Christopher
  • B. Mayer
  • C. Kendall
  • P. Mchale


Understanding the effects of climate change including precipitation patterns has important implications for evaluating the biogeochemical responses of watersheds. We focused on four storms in late summer and early fall that occurred after an exceptionally dry period in 2002. We analyzed not only the influence of these storms on episodic chemistry and the role of different water sources in affecting surface water chemistry, but also the relative contributions of these storms to annual biogeochemical mass balances. The study site was a well studied 135-ha watershed in the Adirondack Park of New York State (USA). Our analyses integrated measurements on hydrology, solute chemistry and the isotopic composition of NO315N and δ18O) and SO42−34S and δ18O) to evaluate how these storms affected surface water chemistry. Precipitation amounts varied among the storms (Storm 1: Sept. 14–18, 18.5 mm; Storm 2: Sept. 21–24, 33 mm; Storm 3: Sept. 27–29, 42.9 mm; Storm 4: Oct. 16–21, 67.6 mm). Among the four storms, there was an increase in water yields from 2 to 14%. These water yields were much less than in studies of storms in previous years at this same watershed when antecedent moisture conditions were higher. In the current study, early storms resulted in relatively small changes in water chemistry. With progressive storms the changes in water chemistry became more marked with particularly major changes in Cb (sum of base cations), Si, NO3, and SO42−, DOC and pH. Analyses of the relationships between Si, DOC, discharge and water table height clearly indicated that there was a decrease in ground water contributions (i.e., lower Si concentrations and higher DOC concentrations) as the watershed wetness increased with storm succession. The marked changes in chemistry were also reflected in changes in the isotopic composition of SO42− and NO3. There was a strong inverse relationship between SO42− concentrations and δ34S values suggesting the importance of S biogeochemical redox processes in contributing to SO42− export. The isotopic composition of NO3 in stream water indicated that this N had been microbially processed. Linkages between SO42− and DOC concentrations suggest that wetlands were major sources of these solutes to drainage waters while the chemical and isotopic response of NO3 suggested that upland sources were more important. Although these late summer and fall storms did not play a major role in the overall annual mass balances of solutes for this watershed, these events had distinctive chemistry including depressed pH and therefore have important consequences to watershed processes such as episodic acidification, and the linkage of these processes to climate change.


Hydrology Isotopes Nitrate Storms Sulfate Watershed 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber, J.D., Driscoll, C.T. 1997Effects of land useclimate variation and N deposition on N cycling and C storage in northern hardwood forestsGlobal Biogeochem. Cycles11639648CrossRefGoogle Scholar
  2. Ameel, J.J., Axler, R.P., Owen, C.J. 1993Persulfate digestion for determination of total nitrogen and phosphorous in low-nutrient watersAm. Environ. Lab.101111Google Scholar
  3. Bailey, S.W., Mayer, B., Mitchell, M.J. 2004Evidence for the influence of mineral weathering on stream water sulphate in Vermont and New HampshireHydrol. Proc.1816391653CrossRefGoogle Scholar
  4. Bischoff, J.M., Bukaveckas, P., Mitchell, M.J., Hurd, T. 2001Nitrogen storage and cycling of a forested wetland: implications for watershed N processingWater Air Soil Pollut.12897114CrossRefGoogle Scholar
  5. Boyer, E.W., Hornberger, G.M., Bencala, K.E., McKnight, D.M. 2000Effects of asynchronous snowmelt on flushing of dissolved organic carbon: a mixing model approachHydrol. Proc.1432913308CrossRefGoogle Scholar
  6. Boyer, E.W., Hornberger, G.M., Bencala, K.E., McKnight, D.M. 1997Response characteristics of DOC flushing in an alpine catchmentHydrol. Proc.1116351647CrossRefGoogle Scholar
  7. Brooks, P.D., Williams, M.W. 1999Snowpack controls on nitrogen cycling and export seasonally snow-covered catchmentsHydrol. Proc.1321772190CrossRefGoogle Scholar
  8. Burns, D.A. 2002Stormflow-hydrograph separation based on isotopes: the thrill is gone-what is next?Hydrol. Proc.1615151517CrossRefGoogle Scholar
  9. Burns, D.A., Kendall, C. 2002Analysis of δ15N and δ18O to differentiate NO3 sources in runoff at two watersheds in the Catskill Mountains of New YorkWater Res. Res.389/19/11CrossRefGoogle Scholar
  10. Campbell, J.L., Mitchell, M.J., Groffman, P.M., Christenson, L.M. 2005Winter in northeastern North America: An often overlooked but critical period for ecological processesFrontiers Ecol.3314322Google Scholar
  11. Casciotti, K.L., Sigman, D.M., Galanter Hastings, M., Böhlke, J.K., Hilkert, A. 2002Measurement of the oxygen isotopic composition of nitrate in marine and fresh waters using the denitrifier methodAnal. Chem.7449054912CrossRefGoogle Scholar
  12. Castillo, V.M., Gómez-Plaza, A., Martínez-Mena, M. 2003The role of antecedent soil water content in the runoff response of semiarid catchments: a simulation approachJ. Hydrol.284114130CrossRefGoogle Scholar
  13. Chang, C.C.Y., Langston, J., Riggs, M., Campbell, D.H., Silva, S.R., Kendall, C. 1999A method for nitrate collection for δ15N and δ18O analysis from waters with low nitrate concentrationsCan. J. Fish. Aquat. Sci.5619CrossRefGoogle Scholar
  14. Creed, I.F., Band, L.E., Foster, N.W., Morrison, I.K., Nickolson, J.A., Semkin, R.S., Jeffries, D.S. 1996Regulation of nitrate-N release from temperate forests: a test of the N flushing hypothesisWater Res. Res.3233373354CrossRefGoogle Scholar
  15. Creed, I.F., Band, L.E. 1998Export of nitrogen from catchments within a temperate forest. Evidence for a unifying mechanism regulated by variable source area dynamicsWater Res. Res.3431053120CrossRefGoogle Scholar
  16. Christopher S.F., Page B.D., Campbell J.L. and Mitchell M.J. 2005. Contrasting stream water NO3 in two nearly adjacent catchments: The role of soil Ca and forest vegetation. Global Change Biol. In press.Google Scholar
  17. David, M.B., Mitchell, M.J., Scott, T.J. 1987Importance of organic sulfur constituents to sulfur cycling in a northern hardwood forest ecosystemBiology Fert. Soils5258264Google Scholar
  18. Davidson, E.A., Chorover, J., Dail, D.B. 2003A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesisGlobal Change Biol.9228236CrossRefGoogle Scholar
  19. Davies, T.D., Tranter, M., Wigington, P.J.,Jr, Eshleman, K.N., Peters, N.E., Sickle, J., DeWalle, D.R., Murdoch, P.S. 1999Prediction of episodic acidification in the North-eastern USA: an empirical/mechanistic approachHydrol. Proc.1311811195CrossRefGoogle Scholar
  20. Dewalle, D.R., Edwards, P.J., Swistock, B.R., Aravena, R., Drimmie, R.J. 1997Seasonal isotope hydrology of three Appalachian forest CatchmentsHydrol. Proc.1118951906CrossRefGoogle Scholar
  21. Dhamala, B.R., Mitchell, M.J. 1995Sulfur speciation, vertical distribution, and seasonal variation in a northern hardwood soil: A 35S tracer studyCan. J. For. Res.25234243Google Scholar
  22. Eimers, M.C., Dillon, P.J. 2002Climate effects on sulphate flux from forested catchments in south-central OntarioBiogeochem.61337355CrossRefGoogle Scholar
  23. Eshleman, K.N., Wigington, P.J.,Jr, Davies, T.D., Tranter, M. 1992Modelling episodic acidification of surface waters: the state of the scienceEnviron. Pollut.77287295CrossRefGoogle Scholar
  24. Fisher, D. 1957Bedrock Geology Map of New York StateNYS Museum Bulletin 221–4 AlbanyNew YorkGoogle Scholar
  25. Fitzhugh, R.D., Driscoll, C.T., Groffman, P.M., Tierney, G.L., Fahey, T.J., Hardy, J.P. 2001Effects of soil freezing disturbance on soil solution nitrogen, phosphorus and carbon chemistry in a northern hardwood ecosystemBiogeochemistry56215238CrossRefGoogle Scholar
  26. Frank, H., Schleppi, P., Peter, W., Hannes, F. 2000Export of dissolved organic carbon and nitrogen from Gleysol dominated catchments-the significance of water flow pathsBiogeochemistry50137161CrossRefGoogle Scholar
  27. Gehre, M., Strauch, G. 2003High-temperature elemental analysis and pyrolysis techniques for stable isotope analysisRapid Commun. Mass Spectrom.1714971503CrossRefGoogle Scholar
  28. Giblin A.E. and Wieder R.K. 1992. Sulphur cycling in marine and freshwater wetlands. In Sulfur Cycling on the Continents. SCOPE 48. John Wiley and Sons, Inc. Publishers, Chichester, pp. 85–124.Google Scholar
  29. Giesemann, A., Jäger, H.J., Norman, A.-L., Krouse, H.R., Brand, W.A. 1994On-line sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometerAnal. Chem.6628162819CrossRefGoogle Scholar
  30. Goodale, C.L., Aber, J.D., Vitousek, P.M. 2003An unexpected nitrate decline in New Hampshire streamsEcosystems67586CrossRefGoogle Scholar
  31. Groffman, P.M., Driscoll, C.T., Fahey, T.J., Hardy, J.P., Fitzhugh, R.D., Tierney, G.L. 2001Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forestBiogeochemistry56191213CrossRefGoogle Scholar
  32. Hendershot, W.J., Courchesne, F., Schemenaue, R.S. 1992Soil acidification along a topographic gradient on Roundtop mountain, Quebec, CanadaWater Air Soil Pollut.61235242CrossRefGoogle Scholar
  33. Hinton, M.J., Schiff, S.L., English, M.C. 1994Examining the contributions of glacial till water to storm runoff using two- and three-component hydrograph separationsWater Res. Res.30983993CrossRefGoogle Scholar
  34. Hornberger, G.M., Bencala, K.E., McKnight, D.M. 1994Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, ColoradoBiogeochemistry25147165CrossRefGoogle Scholar
  35. Hurd, T.M., Raynal, D.J., Schwintzer, C.R. 2001Symbiotic N2 fixation of Alnus incana sprugosa in shrub wetlands of the Adirondack Mountains, New York, USAOecologia12694103CrossRefGoogle Scholar
  36. Hurrell, J.W. 1995Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitationScience269676679Google Scholar
  37. Inamdar, S.P., Christopher, S.F., Mitchell, M.J. 2004Export mechanisms for dissolved organic carbon and nitrate during summer storm events in a glaciated forested catchment in New York, USAHydrol. Proc.1826512661CrossRefGoogle Scholar
  38. Johnson, C.A., Mast, M.A., Kester, C.L. 2001Use of 17O/16O to trace atmospherically-deposited sulfate in surface waters: a case study in alpine watersheds in the Rocky MountainsGeophys. Res. Lett.2844834486CrossRefGoogle Scholar
  39. Kendall, C. 1998Tracing Nitrogen Sources and Cycling in Catchments, Isotope Tracers in catchment hydrologyElsevier ScienceBVGoogle Scholar
  40. Kester, C.L., Baron, J.S., Turk, J.T. 2003Isotopic study of sulfate sources and residence times in a subalpine watershedEnviro. Geology43606613Google Scholar
  41. Kieft, T., Soroker, E., Firestone, M.K. 1987Microbial biomass response to a rapid increase in water potential when dry soil is wettedSoil Biol. Biochem.19119126CrossRefGoogle Scholar
  42. Laudon, H., Dillon, P.J., Eimers, M.C., Semkin, R.G., Jeffries, D.S. 2004Climate-induced episodic acidification of streams in central OntarioEnviron. Sci. Technol3860096015CrossRefGoogle Scholar
  43. Mayer, B., Feger, K.H., Giesemann, A., Jäger, H.J. 1995aInterpretation of sulfur cycling in two catchments in the Black Forest (Germany) using stable sulfur and oxygen isotope dataBiogeochemistry305158CrossRefGoogle Scholar
  44. Mayer, B., Fritz, P., Prietzel, J., Krouse, H.R. 1995bThe use of stable sulfur and oxygen isotope ratios for interpreting the mobility of sulfate in aerobic forest soilsAppl. Geochem.10161173CrossRefGoogle Scholar
  45. Mayer, B., Boyer, E.W., Goodale, C., Jaworski, N.A., Breemen, N., Howarth, R.W., Seitzinger, S., Billen, G., Lajtha, K., Nadelhoffer, K., Dam, D., Hetling, L.J., Nosal, M., Paustian, K. 2002Sources of nitrate in rivers draining sixteen watersheds in the Northeastern U.S.: isotopic constraintsBiogeochemistry57171197CrossRefGoogle Scholar
  46. McHale M.R. 1999. Hydrologic controls of nitrogen cycling in an Adirondack Watershed Ph.D dissertation. State University of New York, College of Environmental Science and Forestry, SyracuseNew York, p.230Google Scholar
  47. McHale, M.R., Mitchell, M.J., McDonnell, J.J., Cirmo, C. 2000Nitrogen solutes in an Adirondack forested watershed: importance of dissolved organic nitrogenBiogeochemistry48165184CrossRefGoogle Scholar
  48. McHale M.R., McDonnell J.J., Mitchell M.J. and Cirmo C.P. 2002. A field based study of soil- and groundwater nitrate release in an Adirondack forested watershed. Water Res. Res. 38(4): 1029/2000WR000102 (17 pages).Google Scholar
  49. Michalzik, B., Kalbitz, K., Park, J.H., Solinger, S., Matzner, E. 2001Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forestsBiogeochemistry52173205CrossRefGoogle Scholar
  50. Mitchell M.J. 2005. Episodic acidification. In: Lehr J.H. (ed.), Encyclopedia of Water. John Wiley and Sons Publishing, (In press).Google Scholar
  51. Mitchell, M.J., Driscoll, C.T., Kahl, J.S., Likens, G.E., Murdoch, P.S., Pardo, L.H. 1996aClimatic control of nitrate loss from forested watersheds in the northeast United StatesEnviron. Sci. Technol.3026092612CrossRefGoogle Scholar
  52. Mitchell, M.J., Raynal, D.J., Driscoll, C.T. 1996bBiogeochemistry of a forested watershed in the central Adirondack Mountains: temporal changes and mass balancesWater Air Soil Pollut.88355369CrossRefGoogle Scholar
  53. Mitchell, M.J., Krouse, C.R., Mayer, B., Stam, A.C., Zhang, Y. 1998

    Use of stable isotopes in evaluating sulfur biogeochemistry of forest ecosystems

    Isotope Tracers in Catchment HydrologyElsevierAmsterdam489518
    Google Scholar
  54. Mitchell, M.J., McHale, P.J., Inamdar, S., Raynal, D.R. 2001aRole of within lake processes and hydrobiogeochemical changes over 16 years in a watershed in the Adirondack Mountains of New York StateUSAHydrol. Proc.1519511965CrossRefGoogle Scholar
  55. Mitchell M.J., McGee G., McHale P. and Weathers K.C. 2001b. Experimental design and instrumentation for analyzing solute concentrations and fluxes for quantifying biogeochemical processes in watersheds. Methodology paper series of the 4th International Conference on ILTER in East Asia and Pacific Region, Ulaanbaatar-Hatgal, Mongolia 2001, 2001 ILTER Network. pp. 15–21Google Scholar
  56. Mitchell, M.J., Driscoll, C.T., Inamdar, S., McGee, G., Mbila, M., Raynal, D.J. 2003Nitrogen biogeochemistry in the Adirondack Mountains of New York: hardwood ecosystems and associated surface watersEnviron. Pollut.123355364CrossRefGoogle Scholar
  57. Mollitor, A.V., Raynal, D.J. 1982Atmospheric deposition and ionic movements in Adirondack forest soilsSoil Sci. Soc. Amer. J.4610321036Google Scholar
  58. Ohrui, K., Mitchell, M.J. 1998Spatial patterns of soil nitrate in Japanese forested watersheds: importance of the near-stream zone as a source of nitrate in stream waterHydrol. Proc.1214331445CrossRefGoogle Scholar
  59. Pardo, L.H., Kendall, C., Pett-Ridge, J., Chang, C.C.Y. 2004Evaluating the source of streamwater nitrate using δ15N and δ18O in nitrate in two watersheds in New HampshireUSAHydrol. Proc.1826992712CrossRefGoogle Scholar
  60. Park, J., Mitchell, M.J., McHale, P.J., Christopher, S.F., Myers, T.P. 2003Interactive effects of changing climate and atmospheric deposition on N and S biogeochemistry in a forested watershed of the Adirondack Mountains, New York StateGlobal Change Biol.916021619CrossRefGoogle Scholar
  61. Piatek, K.B., Mitchell, M.J., Silva, S.R., Kendall, C. 2005Sources of nitrate in snowmelt discharge: evidence from water chemistry and stable isotopes of nitrateWater Air Soil Pollut.1651335CrossRefGoogle Scholar
  62. Reuss, J.O., Johnson, D.W. 1986Acid Deposition and the Acidification of Soil and WaterSpringer-VerlagNew YorkGoogle Scholar
  63. Rock, L., Mayer, B. 2002Isotopic assessment of sources and processes affecting sulfate and nitrate in surface water and groundwater of LuxembourgIsot. Environ. Health Stud.38191206CrossRefGoogle Scholar
  64. Schindler, S.C., Mitchell, M.J. 1987Dynamics of 35S in horizons and leachates from a hardwood forest spodosolSoil Biol. Biochem.19531538CrossRefGoogle Scholar
  65. Shanley, J.B., Kendall, C., Smith, T.E., Wolock, D.M., McDonell, J.J. 2002Controls on old and new water contributions to stream flow at some nested catchments in VermontUSAHydrol. Process.16589609CrossRefGoogle Scholar
  66. Shanley J.B., Mayer M., Mitchell M.J., Michel R.L., Bailey S. and Kendall C. 2005. Differentiating atmospheric and mineral sources of sulfur during snowmelt using δ34S, 35S activity, and δ18O of sulfate and water as tracers. Biogeochemistry 76: 161–185.Google Scholar
  67. Shepard, J.P., Mitchell, M.J., Scott, T.J., Zhang, Y.M., Raynal, D.J. 1989Measurements of wet and dry deposition in a northern hardwood forestWater Air Soil Pollut.48225238CrossRefGoogle Scholar
  68. Sickman, J.O., Leydecker, A., Chang, CCY, Kendall, C., Melack, J.M., Lucero, D.M., Schimel, J. 2003Mechanisms underlying export of N from high-elevation catchments during seasonal transitionsBiogeochemistry64124CrossRefGoogle Scholar
  69. Sigman, D.M., Casciotti, K.L., Andreani, M., Barford, C., Galanter, M., Böhlke, J.K. 2001A bacterial method for the nitrogen isotopic analysis of nitrate in marine and fresh watersAnal. Chem.7341454153CrossRefGoogle Scholar
  70. Silva, S.R., Kendall, C., Wilkinson, D.H., Ziegler, A.C., Chang, C.C.Y., Avanzino, R.J. 2000A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratiosJ. Hydrol.2282236CrossRefGoogle Scholar
  71. Somers, R.C. 1986Soil classification, genesis, morphology, and variability with the Central Adirondack Region of New York PhD dissertationState University of New York, College of Environmental Science and ForestrySyracuseNY746Google Scholar
  72. Spoelstra, J., Schiff, S.L., Elgood, R.J., Semkin, R.G., Jeffries, D.S. 2001Tracing the sources of exported nitrate in the Turkey Lakes Watershed using 15N/14N and 18O/16O isotopic ratiosEcosystems4536544CrossRefGoogle Scholar
  73. Stumm, W., Morgan, J.J. 1970Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural WatersWiley-InterscienceNew YorkGoogle Scholar
  74. Thode, H.G. 1991

    Sulphur isotopes in nature and the environment: an overview

    Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment. SCOPE 43Publisher John Wiley and SonsChichester126
    Google Scholar
  75. Venterea, R.T., Lovett, G.M., Groffman, P.M., Schwarz, P.A. 2003Landscape patterns of net nitrification in a northern hardwood-conifer forestSoil Sci. Soc. Am. J.67527539CrossRefGoogle Scholar
  76. Venterink, H.O., Davidsson, T.E., Kiehl, K., Leonardson, L. 2002Impact of drying and re-wetting on NP and K dynamics in a wetland soilPlant Soil243119130CrossRefGoogle Scholar
  77. Wellington, B.L., Driscoll, C.T. 2004The episodic acidification of a stream with elevated concentrations of dissolved organic carbonHydrol. Proc.1826632680CrossRefGoogle Scholar
  78. Watmough, S.A., Eimers, M.C., Aherne, J., Dillon, P.J. 2004Climate effects on nitrate export from forested catchments in south-central OntarioEnviron. Sci. Technol.3823832388CrossRefGoogle Scholar
  79. Wettstein, J.J., Mearns, L.O. 2002The influence of the North Atlantic-Arctic Oscillation on mean variance and extremes of temperature in the northeastern United States and CanadaJ. Climate1535863600CrossRefGoogle Scholar
  80. Wigington, P.J.,Jr, Davies, T.D., Tranter, M., Eshleman, K.N. 1992Comparison of episodic acidification in CanadaEurope and the United StatesEnviron. Pollut.782935CrossRefGoogle Scholar
  81. Wigington, P.J.,Jr, Baker, J.P., DeWalle, D.R., Kretser, W.A., Murdoch, P.S., Simonin, H.A., Sickle, J., McDowell, M.K., Peck, D.V., Barchet, W.R. 1996aEpisodic acidification of small streams in the northeastern United States: episodic response projectEcol. Appl.62374388Google Scholar
  82. Wigington, P.J.,Jr, DeWalle, D.R., Murdoch, P.S., Kretser, W.A., Simonin, H.A., Sickle, J., Baker, J.P. 1996bEpisodic acidification of small streams in the northeastern United Sates: ionic controls of episodesEcol. Appl.62389407Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • M. J. Mitchell
    • 1
  • K. B. Piatek
    • 1
    • 2
  • S. Christopher
    • 1
  • B. Mayer
    • 3
  • C. Kendall
    • 4
  • P. Mchale
    • 1
  1. 1.College of Environmental Science and ForestryState University of New YorkSyracuseUSA
  2. 2.Division of ForestryWest Virginia UniversityMorgantownUSA
  3. 3.Department of Geology and GeophysicsUniversity of CalgaryCalgaryCanada
  4. 4.Water Resources DivisionUSGSMenlo ParkUSA

Personalised recommendations