Biogeochemistry

, Volume 75, Issue 3, pp 433–453 | Cite as

The Temperature Response of CO2 Production from Bulk Soils and Soil Fractions is Related to Soil Organic Matter Quality

Article

Abstract

The projected increase in global mean temperature could accelerate the turnover of soil organic matter (SOM). Enhanced soil CO2 emissions could feedback on the climate system, depending on the balance between the sensitivity to temperature of net carbon fixation by vegetation and SOM decomposition. Most of the SOM is stabilised by several physico-chemical mechanisms within the soil architecture, but the response of this quantitatively important fraction to increasing temperature is largely unknown. The aim of this study was to relate the temperature sensitivity of decomposition of physical and chemical soil fractions (size fractions, hydrolysis residues), and of bulk soil, to their quality and turnover time. Soil samples were taken from arable and grassland soils from the Swiss Central Plateau, and CO2 production was measured under strictly controlled conditions at 5, 15, 25, and 35 °C by using sequential incubation. Physico-chemical properties of the samples were characterised by measuring elemental composition, surface area, 14C age, and by using DRIFT spectroscopy. CO2 production rates per unit (g) organic carbon (OC) strongly varied between samples, in relation to the difference in the biochemical quality of the substrates. The temperature response of all samples was exponential up to 25 °C, with the largest variability at lower temperatures. Q10 values were negatively related to CO2 production over the whole temperature range, indicating higher temperature sensitivity of SOM of lower quality. In particular, hydrolysis residues, representing a more stabilised SOM pool containing older C, produced less CO2 g−1 OC than non-hydrolysed fractions or bulk samples at lower temperatures, but similar rates at ≥25 °C, leading to higher Q10 values than in other samples. Based on these results and provided that they apply also to other soils it is suggested that because of the higher sensitivity of passive SOM the overall response of SOM to increasing temperatures might be higher than previously expected from SOM models. Finally, surface area measurements revealed that micro-aggregation rather than organo-mineral association mainly contributes to the longer turnover time of SOM isolated by acid hydrolysis.

Keywords

Hydrolysis Quality Respiration Soil organic matter Stabilisation Temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ågren, G.I., Bosatta, E. 2002Reconciling differences in predictions of temperature response of soil organic matterSoil Biol. Biochem.34129132CrossRefGoogle Scholar
  2. Allard, B., Templier, J., Largeau, J. 1997Artifactual origin of mycobacterial bacteranFormation of melanoidin-like artifact macromolecular material during the usual isolation process. Org. Geochem.26691703Google Scholar
  3. Anderson, J.M. 1991The effects of climate change on decomposition processes in grassland and coniferous forestsEcol. Appl.1326347Google Scholar
  4. Bol, R., Bolger, T., Cully, R., Little, D. 2003Recalcitrant soil organic matter mineralize more efficiently at higher temperaturesJ. Plant Nutr. Soil Sci.166300307CrossRefGoogle Scholar
  5. Bolin B. and Sukumar R. 2000. Global perspective. In: Watson R.T., Noble I.R., Bolin B., Ravindranath N.H., Verardo D.J. and Dokken D.J. (eds), Land use, Land-use Change, and Forestry. A Special Report of the IPCC. Cambridge University Press, pp. 23--51.Google Scholar
  6. Bosatta, E., Ågren, G.I. 1999Soil organic matter quality interpreted thermodynamicallySoil Biol. Biochem.3118891891CrossRefGoogle Scholar
  7. Burke, I.C., Yonker, C.M., Parton, W.J., Cole, C.V., Flach, K., Schimel, D.S. 1989Textureclimateand cultivation effects on soil organic-matter content in US grassland soilsSoil Sci. Soc. Am. J.53800805Google Scholar
  8. Buyanovsky, G.A., Aslam, M., Wagner, G.H. 1994Carbon turnover in soil physical fractionsSoil Sci. Soc. Am. J.5811671173Google Scholar
  9. Curiel Yuste, J., Janssens, I.A., Carrara, A., Ceulemans, R. 2004Annual Q10 of soil respiration reflects plant phonological patterns as well as temperature sensitivityGlob. Change Biol.10161169CrossRefGoogle Scholar
  10. Dalias, P., Anderson, J.M., Bottner, P., Couteaux, M.M. 2001Temperature responses of carbon mineralization in conifer forest soils from different regional climates incubated under standard laboratory conditionsGlob. Change Biol.7181192CrossRefGoogle Scholar
  11. Davidson, E.A., Trumbore, S.E., Amundson, R. 2000Soil warming and organic carbon contentNature408789790CrossRefPubMedGoogle Scholar
  12. Dorr, H., Munnich, K.O. 1986Annual variations of the C-14 content of soil CO2Radiocarbon28338345Google Scholar
  13. Ellerbrock, R.H., Hohn, A., Rogasik, J. 1999Functional analysis of soil organic matter as affected by long-term manurial treatmentEur. J. Soil Sci.506571CrossRefGoogle Scholar
  14. Falloon, P., Smith, P., Coleman, K., Marshall, S. 1998Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted Carbon ModelSoil Biol. Biochem.3012071211CrossRefGoogle Scholar
  15. Falloon, P., Smith, P. 2000Modelling refractory soil organic matterBiol. Fertil. Soils30388398CrossRefGoogle Scholar
  16. Fang, C., Smith, P., Moncrieff, J.B., Smith, J.U. 2005Similar response of labile and resistant soil organic matter pools to changes in temperatureNature4335759CrossRefPubMedGoogle Scholar
  17. Giardina, C.P., Ryan, M. 2000Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperatureNature404858861CrossRefPubMedGoogle Scholar
  18. Gu, L., Post, W.M., King, A.W. 2004Fast labiel carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: A model analysisGlob. Biogeochem. Cycles18GB1022CrossRefGoogle Scholar
  19. Hassink, J. 1995Decomposition rate constants of size and density fractions of soil organic-matterSoil Sci. Soc. Am. J.5916311635Google Scholar
  20. Hunt, H.W. 1977Simulation model for decomposition in grasslandsEcology58469484Google Scholar
  21. Jenny, H. 1980The Soil Resource. Ecological Studies 37Springer VerlagN.YGoogle Scholar
  22. Kätterer, T., Reichstein, M., Andren, O., Lomander, A. 1998Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different modelsBiol. Fertil. Soils27258262CrossRefGoogle Scholar
  23. Kaiser, K., Guggenberger, G. 2003Mineral surfaces and soil organic matterEur. J. Soil Sci.54219236CrossRefGoogle Scholar
  24. Kirschbaum, M.U.F. 1995The temperature-dependence of soil organic matter decomposition, and the effect of global warming on soil organic-C storageSoil Biol. Biochem.27753760CrossRefGoogle Scholar
  25. Knorr, W., Prentice, I.C., House, J.I., Holland, E.A. 2005Long-term sensitivity of soil carbon turnover to warmingNature433298301CrossRefPubMedGoogle Scholar
  26. Kögel-Knabner, I. 1997C-13 and N-15 NMR spectroscopy as a tool in soil organic matter studiesGeoderma80243270CrossRefGoogle Scholar
  27. Leavitt, S.W., Follett, R.F., Paul, E.A. 1996Estimation of slow- and fast-cycling soil organic carbon pools from 6N HCl hydrolysisRadiocarbon38231239Google Scholar
  28. Leifeld, J. 2003Comments on “Recalcitrant soil organic materials mineralize more efficiently at higher temperatures” by R. Bol, T. BolgerR. Cully, and D. Little; Journal of Plant Nutrition and Soil Science 166: 300–307(2003)J. Plant Nutr. Soil Sci.166777778CrossRefGoogle Scholar
  29. Leifeld, J., Kögel-Knabner, I. 2005Soil organic matter fractions as early indicators for carbon stock changes under different land-use?Geoderma124143155CrossRefGoogle Scholar
  30. Leifeld, J., Bassin, S., Fuhrer, J. 2005Carbon stocks in Swiss agricultural soils predicted by land-usesoil characteristics, and altitudeAgric. Ecosyst. Environ.105255266CrossRefGoogle Scholar
  31. Leinweber P. 1995. Organische Substanzen in Partikelgrößenfraktionen: Zusammensetzung, Dynamik und Einfluß auf Bodeneigenschaften. Vechtaer Studien zur Angewandten Geographie und RegionalwissenschaftBand 15. Vechtaer Druckerei und Verlag Vechta.Google Scholar
  32. Liski, J., Ilvesniemi, H., Mäkelä, A., Westman, C.J. 1999CO2 emissions from soil in response to climatic warming are overestimated – the decomposition of old soil organic matter is tolerant of temperatureAmbio28171174Google Scholar
  33. Lloyd, J., Taylor, J.A. 1994On the temperature dependence of soil respirationFunct. Ecol.8315323Google Scholar
  34. Melillo, J.M., Steudler, P.A., Aber, J.D., Newkirk, K., Lux, H., Bowles, F.P., Catricala, C., Magill, A., Ahrens, T., Morisseau, S. 2002Soil warming and carbon-cycle feedbacks to the climate systemScience29821732176CrossRefPubMedGoogle Scholar
  35. Niemeyer, J., Chen, Y., Bollag, J.M. 1992Characterization of humic acids, composts, and peat by Diffuse Reflectance Fourier-Transform Infrared-SpectroscopySoil Sci. Soc. Am. J.56135140Google Scholar
  36. Parton, W.J., Stewart, J.W.B., Cole, C.V. 1988Dynamics of C, NP and S in grassland soils – a ModelBiogeochemistry5109131CrossRefGoogle Scholar
  37. Poirier, N., Derenne, S., Rouzaud, J.-N., Largeau, C., Mariotti, A., Balesdent, J., Maquet, J. 2000Chemical structure and sources of the macromolecularresistantorganic fraction isolated from a forest soil (Lacadéesouth-west France)Org. Geochem31813827CrossRefGoogle Scholar
  38. Reichstein, M., Bednorz, F., Broll, G., Katterer, T. 2000Temperature dependence of carbon mineralisation: Conclusions from a long-term incubation of subalpine soil samplesSoil Biol. Biochem.32947958CrossRefGoogle Scholar
  39. Sarmiento, J.L., Gruber, N. 2002Sinks for anthropogenic carbonPhys. Today553036Google Scholar
  40. Sollins, P., Homann, P., Caldwell, B.A. 1996Stabilization and destabilization of soil organic matter: Mechanisms and controlsGeoderma7465105CrossRefGoogle Scholar
  41. Sorensen, L.H. 1981Carbon-nitrogen relationships during the humification of cellulose in soils containing different amounts of claySoil Biol. Biochem.13313321CrossRefGoogle Scholar
  42. Thornley, J.H.M., Cannell, M.G.R. 2001Soil carbon storage response to temperature: an hypothesisAnn. Bot.87591598CrossRefGoogle Scholar
  43. Townsend, A.R., Vitousek, P.M., Trumbore, S.E. 1995Soil organic matter dynamics along gradients in temperature and land-use on the Island of HawaiiEcology76721733Google Scholar
  44. Trumbore, S. 2000Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamicsEcol. Applic.10399411Google Scholar
  45. Trumbore S., Bonani G. and Wölfli W. 1990. The rates of carbon cycling in several soils from AMS 14C measurements of fractionated soil organic matter. In: Bowuman A.F. (ed.), Soils and the Greenhouse Effect. John Wiley and Sons Ltd, pp. 407--141.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.AGROSCOPE FAL ReckenholzSwiss Federal Research Station for Agroecology and Agriculture, Air Pollution/Climate GroupZurichSwitzerland

Personalised recommendations