, Volume 77, Issue 3, pp 375–408 | Cite as

Porewater Stoichiometry of Terminal Metabolic Products, Sulfate, and Dissolved Organic Carbon and Nitrogen in Estuarine Intertidal Creek-bank Sediments

  • Nathaniel B. Weston
  • William P. Porubsky
  • Vladimir A. Samarkin
  • Matthew Erickson
  • Stephen E. Macavoy
  • Samantha B. JoyeEmail author


Porewater equilibration samplers were used to obtain porewater inventories of inorganic nutrients (NH 4 + , NO x , PO 4 3− ), dissolved organic carbon (DOC) and nitrogen (DON), sulfate (SO 4 2− ), dissolved inorganic carbon (DIC), hydrogen sulfide (H2S), chloride (Cl), methane (CH4) and reduced iron (Fe2+) in intertidal creek-bank sediments at eight sites in three estuarine systems over a range of salinities and seasons. Sulfate reduction (SR) rates and sediment particulate organic carbon (POC) and nitrogen (PON) were also determined at several of the sites. Four sites in the Okatee River estuary in South Carolina, two sites on Sapelo Island, Georgia and one site in White Oak Creek, Georgia appeared to be relatively pristine. The eighth site in Umbrella Creek, Georgia was directly adjacent to a small residential development employing septic systems to handle household waste. The large data set (>700 porewater profiles) offers an opportunity to assess system-scale patterns of porewater biogeochemical dynamics with an emphasis on DOC and DON distributions. SO 4 2− depletion (SO 4 2− )Dep was used as a proxy for SR, and (SO 4 2− )Dep patterns agreed with measured (35S) patterns of SR. There were significant system-scale correlations between the inorganic products of terminal metabolism (DIC, NH 4 + and PO 4 3− ) and (SO 4 2− )Dep, and SR appeared to be the dominant terminal carbon oxidation pathway in these sediments. Porewater inventories of DIC and (SO 4 2− )Dep indicate a 2:1 stoichiometry across sites, and the C:N ratio of the organic matter undergoing mineralization was between 7.5 and 10. The data suggest that septic-derived dissolved organic matter with a C:N ratio below 6 fueled microbial metabolism and SR at a site with development in the upland. Seasonality was observed in the porewater inventories, but temperature alone did not adequately describe the patterns of (SO 4 2− )Dep, terminal metabolic products (DIC, NH 4 + , PO 4 3− ), DOC and DON, and SR observed in this study. It appears that production and consumption of labile DOC are tightly coupled in these sediments, and that bulk DOC is likely a recalcitrant pool. Preferential hydrolysis of PON relative to POC when overall organic matter mineralization rates were high appears to drive the observed patterns in POC:PON, DOC:DON and DIC:DIN ratios. These data, along with the weak seasonal patterns of SR and organic and inorganic porewater inventories, suggest that the rate of hydrolysis limits organic matter mineralization in these intertidal creek-bank sediments.


Carbon Dissolved organic carbon (DOC) Dissolved organic nitrogen (DON) Sediment metabolism Nitrogen Sulfate reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aller, R.C., Aller, J.Y. 1998The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sedimentsJ. Mar. Res.56905936CrossRefGoogle Scholar
  2. Alperin, M.J., Albert, S.T.L2, Martens, C.S. 1994Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sedimentGeochim. Cosmochim. Acta5849094930CrossRefGoogle Scholar
  3. Alperin, M.J., Martens, C.S., Albert, S.T.L2, Suayah, I.B., Benninger, L.K., Blair, N.E., Jahnke, R.A. 1999Benthic fluxes and porewater concentration profiles of dissolved organic carbon in sediments from the North Carolina continental slopeGeochim. Cosmochim. Acta63427448CrossRefGoogle Scholar
  4. Álvarez-Salgado, X.A., Miller, A.E.J 1998Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: conditions for precise shipboard measurementsMar. Chem.62325333CrossRefGoogle Scholar
  5. Amon, R.M.W., Benner, R. 1996Bacterial utilization of different size classes of dissolved organic matterLimnol. Oceanogr.414151Google Scholar
  6. Arnosti, C., Repeta, D.J. 1994Oligosaccharide degradation by anaerobic marine bacteria: characterization of an experimental system to polymer degradation in sedimentsLimnol. Oceanogr.3918651877Google Scholar
  7. Boudreau, B.P. 1997Diagenetic Models and their ImplicationsSpringerBerlinGoogle Scholar
  8. Boynton, W.R., Kemp, W.M. 1985Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradientMar. Ecol. Prog. Ser.234555Google Scholar
  9. Brüchert, V., Arnosti, C. 2003Anaerobic carbon transformation: experimental studies with flow-through cellsMar. Chem.80171183CrossRefGoogle Scholar
  10. Burdige, D.J., Martens, C.S. 1988Biogeochemical cycling in an organic-rich coastal marine basin: 10. The role of amino acids in sedimentary carbon and nitrogen cyclingGeochim. Cosmochim. Acta5215711584CrossRefGoogle Scholar
  11. Burdige, D.J., Gardner, K.G. 1998Molecular weight distribution of dissolved organic carbon in marine sediment pore watersMar. Chem.624564CrossRefGoogle Scholar
  12. Burdige, D.J., Zheng, S. 1998The biogeochemical cycling of dissolved organic nitrogen in estuarine sedimentsLimnol. Oceanogr.4317961813Google Scholar
  13. Burdige, D.J., Berleson, W.M., Coale, K.H., McManus, J., Johnson, K.S. 1999Fluxes of dissolved organic carbon from California continental margin sedimentsGeochim. Cosmochim. Acta6315071515CrossRefGoogle Scholar
  14. Burdige, D.J. 2001Dissolved organic matter in Chesapeake Bay sediment pore watersOrg. Geochem.32487505CrossRefGoogle Scholar
  15. Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M., Berner, R.A. 1986The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shalesChem. Geol.54149155CrossRefGoogle Scholar
  16. Canfield, D., Thamdrup, B., Hansen, J. 1993The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reductionGeochim. Cosmochim. Acta5738673883Google Scholar
  17. Capone, D.G., Kiene, R.P. 1988Comparison of microbial dynamics in marine and fresh-water sediments - contrasts in anaerobic carbon catabolismLimnol. Oceanogr.33725749Google Scholar
  18. Cermelj, B., Bertuzzi, A., Faganeli, J. 1997Modeling of pore water nutrient distribution and benthic fluxes in shallow coastal waters (Gulf of Trieste, Northern Adriatic)Water Air Soil Pollut.99435444CrossRefGoogle Scholar
  19. Enoksson, V. 1993Nutrient recycling by coastal sediments: effects of added algal materialMar. Ecol. Prog. Ser.92245254Google Scholar
  20. Fenchel, T.M., Findlay, B.J. 1995Ecology and evolution of anoxic worldsOxford University PressOxfordGoogle Scholar
  21. Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., Maynard, V. 1979Early oxidation of organic-matter in pelagic sediments of the eastern equatorial Atlantic – suboxic diagenesisGeochim. Cosmochim. Acta4310751090CrossRefGoogle Scholar
  22. Hesslein, R.H. 1976An in situ sampler for close interval pore water studiesLimnol. Oceanogr.21912914Google Scholar
  23. Hines, M.E., Evans, R.S., Genthner, B.R.S, Willis, S.G., Friedman, S., Rooney-Varga, J.N., Devereux, R. 1999Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alternifloraAppl. Environ. Microbiol.6522092216Google Scholar
  24. Hopkinson, C.S. 1987Nutrient regeneration in shallow-water sediments of the estuarine plume region of the nearshore Georgia Bight USAMar. Biol.94127142CrossRefGoogle Scholar
  25. Hopkinson, C.S., Giblin, A.E., Tucker, J., Garritt, R.H. 1999Benthic metabolism and nutrient cycling along an estuarine salinity gradientEstuaries22825843Google Scholar
  26. Howarth, R.W. 1988Nutrient limitation of net primary production in marine ecosystemsAnn. Rev. Ecol.1989110Google Scholar
  27. Howarth, R.W. 1993Microbial processes in salt-marsh sedimentsFord, T.E. eds. Aquatic microbiology: an ecological approachBlackwellCambridge239259Google Scholar
  28. Iversen, N., Jørgensen, B.B. 1985Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)Limnol. Oceanogr.30944955Google Scholar
  29. Jørgensen, B.B. 1977Sulfur cycle of a coastal marine sediment (Limfjorden, Denmark)Limnol. Oceanogr.22814832Google Scholar
  30. Jørgensen, B.B. 1978A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. 1. Measurements with radiotracer techniquesGeomicrobiol. J.11127Google Scholar
  31. Jørgensen, B.B. 1982Mineralization of organic-matter in the sea bed – the role of sulfate reductionNature296643645CrossRefGoogle Scholar
  32. Jørgensen, B.B., Sørensen, J. 1985Seasonal cycles of O2NO 3 and SO 4 2− reduction in estuarine sediments: the significance of an NO 3 reduction maximum in springMar. Ecol. Prog. Ser.246574Google Scholar
  33. Jørgensen, B.B. 2000Bacteria and marine biogeochemistrySchulz, H.D.Zabel, M. eds. Marine geochemistrySpringerNew York173207Google Scholar
  34. Joye, S.B., Hollibaugh, J.T. 1995Influence of sulfide inhibition of nitrification on nitrogen regeneration in sedimentsScience270623624Google Scholar
  35. King, G.M. 1988Patterns of sulfate reduction and the sulfur cycle in a South Carolina salt marshLimnol. Oceanogr.33376390Google Scholar
  36. Kostka, J.E., Gribsholt, B., Petrie, E., Dalton, D., Skelton, H., Kristensen, E. 2002aThe rates and pathways of carbon oxidation in bioturbated saltmarsh sedimentsLimnol. Oceanogr.47230240Google Scholar
  37. Kostka, J.E., Roychoudhury, A., Van Cappellen, P. 2002bRates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sedimentsBiogeochemistry604976CrossRefGoogle Scholar
  38. Lomstein, B.A., Blackburn, T.H., Henriksen, K. 1989Aspects of nitrogen and carbon cycling in the northern Bering Shelf sediment I. The significance of urea turnover in the mineralization of NH 4 + Mar. Ecol. Prog. Ser.57237247Google Scholar
  39. Lowe, K.L., DiChristina, T.J., Roychoudhury, A.N., Van Cappellen, P. 2000Microbiological and geochemical characterization of microbial Fe(III) reduction in salt marsh sedimentsJ. Geomicrobiol.17163178Google Scholar
  40. Marvin-DiPasquale, M.C., Boynton, W.R., Capone, D.G. 2003Benthic sulfate reduction along the Chesapeake Bay central channel. II. Temporal controlsMar. Ecol. Prog. Ser.2605570Google Scholar
  41. Meile, C., Koretsky, C.M., Cappellen, P. 2001Quantifying bioirrigation in aquatic sediments: an inverse modeling approachLimnol. Oceanogr.46164177Google Scholar
  42. Middelburg, J.J., Soetart, K., Herman, P.M.J 1997Empirical relationships for use in global diagenetic modelsDeep-Sea Res.44327344Google Scholar
  43. Moore, J.W., Schindler, D.E., Scheuerell, M.D., Smith, D., Frodge, J. 2003Lake eutrophication at the urban fringeSeattle region, USAAmbio321318Google Scholar
  44. Murphy, J., Riley, J.P. 1962A modified single solution method for the determination of phosphate in natural systemsAnal. Chim. Acta273136CrossRefGoogle Scholar
  45. Nielsen, O.I., Kristensen, E., Macintosh, D.J. 2003Impact of fiddler crabs (Uca spp) on rates and pathways of benthic mineralization in deposited mangrove shrimp pond wasteJ. Exp. Mar. Biol. Ecol.2895981CrossRefGoogle Scholar
  46. Pilson, M.E.Q. 1998An introduction to the chemistry of the seaPrentice HallNew JerseyGoogle Scholar
  47. Ptacek, C.J. 1998Geochemistry of a septic-system plum in a coastal barrier barPoint PeleeOntarioCanadaJ. Cont. Hydrol.33293312CrossRefGoogle Scholar
  48. Redfield, A.C. 1958The biological control of chemical factors in the environmentAm. Sci.46205222Google Scholar
  49. Roden, E.E., Wetzel, R.G. 1996Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sedimentsLimnol. Oceanogr.4117331748Google Scholar
  50. Rosenfeld, J.K. 1979Ammonium adsorption in anoxic nearshore sedimentsLimnol. Oceanogr.24356364Google Scholar
  51. Rowe, G.T., Clifford, C.H., Smith, K.L. 1976Benthic nutrient regeneration and its coupling to primary productivity in coastal watersNature255215217Google Scholar
  52. Roychoudhury, A.N., Viollier, E., Cappellen, P. 1998A plug flow-through reactor for studying biogeochemical reactions in undisturbed aquatic sedimentsAppl. Geochem.13269280CrossRefGoogle Scholar
  53. Rysgaard, S., Thastum, P., Dalsgaard, T., Christensen, O.K.T2, Sloth, N.P. 1999Effects of salinity on NH 4 + adsorption capacity, nitrification, and denitrification in Danish estuarine sedimentsEstuaries222130Google Scholar
  54. Sansone, F.J., Martens, C.S. 1978Methane oxidation in Cape Lookout Bight, North CarolinaLimnol. Oceanogr.23349355Google Scholar
  55. Sarazin, G., Michard, G., Prevot, F. 1999A rapid and accurate spectroscopic method for alkalinity measurements in sea water samplesWater Res.33290294CrossRefGoogle Scholar
  56. Seitzinger, S.P. 1988Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significanceLimnol. Oceanogr.33702724Google Scholar
  57. Solorzano, L. 1969Determination of ammonia in natural waters by the phenolhypochlorite methodLimnol. Oceanogr.14799801Google Scholar
  58. Stookey, L.L. 1970Ferrozine – a new spectrophotometric reagent for ironAnal. Chem.42779781CrossRefGoogle Scholar
  59. Stumm, W., Morgan, J.J. 1996Aquatic Chemistry3WileyNew YorkGoogle Scholar
  60. Sundareshwar, P.V., Morris, J.T. 1999Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradientLimnol. Oceanogr.4416931701Google Scholar
  61. Teal, J.M. 1958Distribution of fiddler crabs in Georgia salt marshesEcology39185193Google Scholar
  62. Westrich, J.T., Berner, R.A. 1988The effect of temperature on rates of sulfate reduction in marine sedimentsGeomicrobiol. J.699117Google Scholar
  63. Yamamuro, M., Koike, I. 1998Concentrations of nitrogen in sandy sediments of a eutrophic estuarine lagoonHydrobiologia3863744CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Nathaniel B. Weston
    • 1
    • 2
  • William P. Porubsky
    • 1
  • Vladimir A. Samarkin
    • 1
  • Matthew Erickson
    • 1
  • Stephen E. Macavoy
    • 1
    • 3
  • Samantha B. Joye
    • 1
    Email author
  1. 1.Department of Marine ScienceUniversity of GeorgiaAthensUSA
  2. 2.Patrick Center for Environmental ResearchThe Academy of Natural SciencesPhiladelphiaUSA
  3. 3.Biology DepartmentAmerican UniversityWashingtonUSA

Personalised recommendations