Biogeochemistry

, Volume 77, Issue 2, pp 247–263 | Cite as

Impacts of Biological Soil Crust Disturbance and Composition on C and N Loss from Water Erosion

  • Nichole N. Barger
  • Jeffrey E. Herrick
  • Justin Van Zee
  • Jayne Belnap
Article

Abstract

In this study, we conducted rainfall simulation experiments in a cool desert ecosystem to examine the role of biological soil crust disturbance and composition on dissolved and sediment C and N losses. We compared runoff and sediment C and N losses from intact late-successional dark cyanolichen crusts (intact) to both trampled dark crusts (trampled) and dark crusts where the top 1 cm of the soil surface was removed (scraped). In a second experiment, we compared C and N losses in runoff and sediments in early-successional light cyanobacterial crusts (light) to that of intact late-successional dark cyanolichen crusts (dark). A relatively high rainfall intensity of approximately 38 mm per 10-min period was used to ensure that at least some runoff was generated from all plots. Losses of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and ammonium (NH4+ ) were significantly higher from trampled plots as compared to scraped and intact plots. Sediment C and N losses, which made up more than 98% of total nutrient losses in all treatments, were more than 4-fold higher from trampled plots relative to intact plots (sediment C g/m2, intact = 0.74, trampled = 3.47; sediment N g/m2, intact = 0.06, trampled = 0.28). In light crusts, DOC loss was higher relative to dark crusts, but no differences were observed in dissolved N. Higher sediment loss in light crusts relative to dark crusts resulted in 5-fold higher loss of sediment-bound C and N. Total C flux (sediment + dissolved) was on the order of 0.9 and 7.9 g/m2 for dark and light crusts, respectively. Sediment N concentration in the first minutes after runoff from light crusts was 3-fold higher than the percent N of the top 1 cm of soil, suggesting that even short-term runoff events may have a high potential for N loss due to the movement of sediments highly enriched in N. Total N loss from dark crusts was an order of magnitude lower than light crusts (dark = 0.06 g N/m2, light = 0.63 g/m2). Overall, our results from the small plot scale (0.5 m2) suggest that C and N losses are much lower from intact late-successional cyanolichen crusts as compared to recently disturbed or early-successional light cyanobacterial crusts.

Keywords

Biological soil crust Carbon Canyonlands National Park Colorado Plateau Disturbance Erosion Nitrogen Rainfall simulation Runoff 

References

  1. Abrahams, A.D., Parsons, A.J., Wainwright, J. 1994Resistance to overland flow on semiarid grassland and shrubland hillslopes, Walnut Gulch, southern ArizonaJ. Hydrol.156431446CrossRefGoogle Scholar
  2. Barger, N.N. 2003Biogeochemical cycling and N dynamics of biological soil crusts in a semi-arid ecosystemColorado State UniversityFort Collins, COPh.D. thesisGoogle Scholar
  3. Belnap, J. 1996Soil surface disturbances in cold deserts: effects on nitrogenase activity in cyanobacterial–lichen soil crustsBiol. Fertil. Soils23362367Google Scholar
  4. Belnap, J., Gardner, J.S. 1993Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatusGreat Basin Natural.534047Google Scholar
  5. Belnap, J., Budel, B., Lange, O.L. 2001

    Biological soil crusts: characteristics and distribution

    Belnap, J.Lange, O. eds. Biological Soil Crusts: StructureFunction, and ManagementSpringer-VerlagBerlin, Heidelberg330
    Google Scholar
  6. Belnap, J., Eldridge, D. 2001

    Disturbance and recovery of biological soil crusts

    Belnap, J.Lange, O. eds. Biological Soil Crusts: StructureFunction, and ManagementSpringer-VerlagBerlin, Heidelberg363383
    Google Scholar
  7. Belnap, J., Hawkes, C.V., Firestone, M.K. 2003Boundaries in miniature: two examples from soilsBioscience53739749Google Scholar
  8. Belnap, J., Phillips, S.L., Miller, M.E. 2004Response of desert biological soil crust to alterations in precipitation frequencyOecologia141306316CrossRefGoogle Scholar
  9. Belnap, J., Welter, J.K., Grimm, N.B., Barger, N.N., Ludwig, J. 2005Linkages between microbial and hydrologic processes in arid and semi-arid watershedsEcology86298307Google Scholar
  10. Belnap J., Phillips S.L. and Troxler T.T. in press. Soil lichen and moss cover and species richness can be highly dynamic: the effects of invasion by the annual exotic grass Bromus tectorumthe effects of climate on biological soil crusts. Appl. Soil Ecol. in press. Google Scholar
  11. Blank, R.R., Young, J.A., Allen, F.L. 1999Aeolian dust in a saline playa environment, Nevada, U.S.AJ. Arid Environ.41365381CrossRefGoogle Scholar
  12. Bolton, S.M., Ward, T.J., Cole, R.A. 1991Sediment-related transport of nutrients from southwester watershedJ. Irrigat. Drainage Eng.117736747Google Scholar
  13. Bond, R.D., Harris, J.R. 1964The influence of the microflora on physical properties of soils. I. Effects associated with filamentous algae and fungiAust. J. Soil Res.2111122Google Scholar
  14. Booth, W.E. 1941Algae as pioneers in plant succession and their importance in erosion controlEcology223846Google Scholar
  15. Bowker, M., Reed, S.C., Belnap, J., Phillips, S. 2002Temporal variation in community composition, pigmentation, and Fv/Fm of desert cyanobacterial soil crustsMicrob. Ecol.431325CrossRefGoogle Scholar
  16. Danin, A., Ganor, E. 1991Trapping of airborne dust by mosses in the Negev Desert, IsraelEarth Surface Process. Landforms16153162Google Scholar
  17. Cano, M.S., Mule, M.C.Z., Caire, G.Z., Palma, R.M., Colombo, K. 1997Aggregation of soil particles by Nostoc muscorum Ag. (Cyanobacteria)Phyton603338Google Scholar
  18. Eldridge, D.J. 1993Cryptogam cover and soil surface condition: effects on hydrology on a semiarid woodland soilArid Soil Res. Rehab.7203217Google Scholar
  19. Eldridge, D.J. 1996Dispersal of microphytes by water erosion in an Australian semi-arid woodlandLichenologist2897100Google Scholar
  20. Eldridge, D.J. 1998Trampling of microphytic crusts on calcareous soils, and its impact on erosion under rain-impacted flowCatena33221239CrossRefGoogle Scholar
  21. Eldridge, D.J., Greene, R.S.B. 1994Assessment of sediment yield by splash erosion on a semi-arid soil with varying cryptogam coverJ. Arid Environ.26221232CrossRefGoogle Scholar
  22. Eldridge, D.J., Kinnell, P.I.A. 1997Assessment of erosions rates from microphyte-dominated calcareous soils under rain-impacted flowAust. J. Soil Res.35475489CrossRefGoogle Scholar
  23. Faust W.F. 1970. The effect of algal–mold crusts on the hydrologic processes of infiltration, runoff, and soil erosion under simulated conditions. Masters of Science. University of Arizona.Google Scholar
  24. Fierer, N.G., Gabet, E.J. 2002Carbon and nitrogen losses by surface runoff following changes in vegetationJ. Environ. Qual.3112071213Google Scholar
  25. Fisher, S.G., Grimm, N.B. 1985Hydrologic and material budgets for a small Sonoran desert watershed during three consecutive cloudburst floodsJ. Arid Environ.9105118Google Scholar
  26. Fletcher, J.E., Martin, W.P. 1948Some effects of algae and molds in the rain-crust of desert soilsEcology2995100Google Scholar
  27. Garcia-Pichel, F., Belnap, J. 2001

    Small scale environments and distribution of biological soil crusts

    Belnap, J.Lange, O. eds. Biological Soil Crusts: StructureFunction, and ManagementSpringer-VerlagBerlin, Heidelberg193202
    Google Scholar
  28. Garcia-Pichel, F., Belnap, J., Neuer, S., Schanz, F. 2003Estimates of global cyanobacterial biomass and its distributionAlgol. Stud109213227Google Scholar
  29. Gee, G.W., Bauder, J.W. 1979Particle-size analysis by hydrometer – simplified method for routine textural analysis and a sensitivity test of measurement parametersSoil Sci. Soc. Am. J.43104107Google Scholar
  30. Herrick, J.E., Whitford, W.G., Soyza, A.G., Zee, J.W., Havstad, K.M., Seybold, C.A., Walton, M. 2001Field soil aggregate stability kit for soil quality and rangeland health evaluationsCatena442735CrossRefGoogle Scholar
  31. Jeffries, D.L., Link, S.O., Klopatek, J.M. 1993bCO2 fluxes of cryptogamic crusts. II. Response to dehydrationNew Phytol.125391396Google Scholar
  32. Karsten, U., Garcia-Pichel, F. 1996Carotenoids and mycosporine-like amino acid compounds in members of the genus Microcoleus (Cyanobacteria): a chemosystematic studySystemat. Appl. Microbiol.19285294Google Scholar
  33. Kidron, G.J., Yaalon, D.H., Vonshak, A. 1999Two causes for runoff initiation on microbiotic crusts: hydrophobicity and pore cloggingSoil Sci.1641827CrossRefGoogle Scholar
  34. Lammers D.A. 1991. Soil Surveys of Canyonlands Area, Utah, Parts of Grand and San Juan Counties. USDA Soil Conservation Service.Google Scholar
  35. Loope, W.L., Gifford, G.F. 1972Influence of a soil microfloral crust on select properties of soils under pinyon–juniper in southeastern UtahJ. Soil Water Conserv.27164167Google Scholar
  36. Ludwig, J.A., Tongway, D.J., Freudenberger, D., Noble, J., Hodgkinson, K. 1997Landscape Ecology Function and Management: Principles from Australia’s RangelandsCSIRO PublicationsCollingwood, AustraliaGoogle Scholar
  37. Mayland, H.F., MacIntosh, T.H., Fuller, W.H. 1966Fixation of isotopic nitrogen on a semiarid soil by algal crust organismsSoil Sci. Soc. Am. Proc.305660Google Scholar
  38. McCalla, T.M. 1946Influence of some microbial groups on stabilizing soil structure against falling water dropsSoil Sci. Soc. Am. Proc.11260263Google Scholar
  39. McKenna-Neuman, C., Maxwell, C.D., Boulton, J.W. 1996Wind transport of sand surfaces crusted with photoautotrophic microorganismsCatena27229247Google Scholar
  40. Meyer, L. 1994

    Rainfall simulators for soil erosion research

    Lal, R. eds. Soil Erosion Research MethodsSt. Lucie PressDelray Beach, FL83103
    Google Scholar
  41. Osborn, B. 1952Range soil conditions influence water intakeJ. Soil Water Conserv.7128132Google Scholar
  42. Palis, R.G., Ghandiri, H., Rose, C.W., Saffigna, P.G. 1997Soil erosion and nutrient loss. 3. Changes in enrichment ratio of total nitrogen and organic carbon under rainfall detachment and entrainmentAust. J. Soil Res.35891905Google Scholar
  43. Parsons, A.J., Abrahams, A.D., Simanton, J.R. 1992Microtopography and soil-surface materials on semi-arid piedmont hillslopes, southern ArizonaJ. Arid Environ.22107115Google Scholar
  44. Pyke, D.A., Herrick, J.E., Shaver, P., Pellant, M. 2002Rangeland health attributes and indicators for qualitative assessmentJ. Range Manage.55584597Google Scholar
  45. Reynolds, R., Belnap, J., Reheis, M., Lamothe, P., Luiszer, F. 2001Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in sourceProc. Natl. Acad. Sci. USA9871237127CrossRefGoogle Scholar
  46. Roberts, F.J., Carbon, B.A. 1972Water repellence in sandy soils of south-western AustraliaAust. J. Soil Res.103542CrossRefGoogle Scholar
  47. Schlesinger, W.H., Raikes, J.A., Hartley, A.E., Cross, A.F. 1996On the spatial pattern of soil nutrients in desert ecosystemsEcology77364374Google Scholar
  48. Schlesinger, W.H., Pilmanis, A.M. 1998Plant–soil interactions in desertsBiogeochemistry42169187CrossRefGoogle Scholar
  49. Schlesinger, W.H., Abrahams, A.D., Parsons, A.J., Wainwright, J. 1999Nutrient losses in runoff from grassland and shrubland habitats in Southern New Mexico: I. Rainfall simulation experimentsBiogeochemistry452134Google Scholar
  50. Schlesinger, W.H., Reynolds, J.F., Cunningham, G.L., Huenneke, L.F., Jarrel, W.M., Virginia, R.A., Whitford, W.G. 1990Biological Feedbacks in global desertificationScience24710431048Google Scholar
  51. Schlesinger, W.H., Ward, T.J., Anderson, J. 2000Nutrient losses in runoff from grassland and shrubland habitats in southern New Mexico: II. Field PlotsBiogeochemistry496986CrossRefGoogle Scholar
  52. Schulten, J.A. 1985Soil aggregation by cryptogams of a sand prairieAm. J. Bot.7216571661Google Scholar
  53. Sherrod, L.A., Dunn, G., Peterson, G.A., Kolberg, R.L. 2002Inorganic carbon analysis by modified pressure-calcimeter methodSoil Sci. Soc. Am. J.66299305Google Scholar
  54. Tchoupopnou, E. 1989Splash from microphytic soil crusts following simulated rain. Master of ScienceUtah State UniversityLogan, UTGoogle Scholar
  55. Verrecchia, E., Yair, A., Kidron, G.J., Verrecchia, K. 1995Physical-properties of the psammophile cryptogamic crust and their consequences to the water regimes of sandy soils, north-western Negev Desert, IsraelJ. Arid Environ.29427437Google Scholar
  56. Warren, S. 2001

    Synopsis: influence of biological soil crusts on arid land hydrology and soil stability

    Belnap, J.Lange, O. eds. Biological Soil Crusts: StructureFunction, and ManagementSpringer-VerlagBerlin, Heidelberg349360
    Google Scholar
  57. Warren, S.D., Thurow, T.L., Blackburn, W.H., Garza, N.E. 1986The influence of livestock trampling under intensive rotation grazing on soil hydrologic characteristicsJ. Range Manage.39491495Google Scholar
  58. Wilcox, B.P., Breshears, D.D., Allen, C.D. 2003Ecohydrology of a resource-conserving semiarid woodland: temporal and spatial relationships and the role of disturbanceEcol. Monogr.73223239Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Nichole N. Barger
    • 1
    • 4
  • Jeffrey E. Herrick
    • 2
  • Justin Van Zee
    • 2
  • Jayne Belnap
    • 1
    • 3
  1. 1.The Natural Resource Ecology LaboratoryColorado State UniversityFort Collins
  2. 2.USDA – ARS Jornada Experimental RangeLas Cruces
  3. 3.USGS – BRD Canyonlands Field StationMoab
  4. 4.Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulder

Personalised recommendations