Skip to main content
Log in

Decadal-scale Dynamics of Water, Carbon and Nitrogen in a California Chaparral Ecosystem: DAYCENT Modeling Results

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The Mediterranean climate, with its characteristic of dry summers and wet winters, influences the hydrologic and microbial processes that control carbon (C) and nitrogen (N) biogeochemical processes in chaparral ecosystems. These biogeochemical processes in turn determine N cycling under chronic N deposition. In order to examine connections between climate and N dynamics, we quantified decadal-scale water, C and N states and fluxes at annual, monthly and daily time steps for a California chaparral ecosystem in the Sierra Nevada using the DAYCENT model. The daily output simulations of net mineralization, stream flow and stream nitrate (NO3) export were developed for DAYCENT in order to simulate the N dynamics most appropriate for the abrupt rewetting events characteristic of Mediterranean chaparral ecosystems. Overall, the magnitude of annual modeled net N mineralization, soil and plant biomass C and N, nitrate export and gaseous N emission agreed with those of observations. Gaseous N emission was a major N loss pathway in chaparral ecosystems, in which nitric oxide (NO) is the dominant species. The modeled C and N fluxes of net primary production (NPP), N uptake and N mineralization, NO3 export and gaseous N emission showed both high inter-annual and intra-annual variability. Our simulations also showed dramatic fire effects on NPP, N uptake, N mineralization and gaseous N emission for three years of postfire. The decease in simulated soil organic C and N storages was not dramatic, but lasted a longer time. For the seasonal pattern, the predicted C and N fluxes were greatest during December to March, and lowest in the summer. The model predictions suggested that an increase in the N deposition rate would increase N losses through gaseous N emission and stream N export in the chaparral ecosystems of the Sierra Nevada due to changes in N saturation status. The model predictions could not capture stream NO3 export during most rewetting events suggesting that a dry-rewetting mechanism representing the increase in N mineralization following soil wetting needs to be incorporated into biogeochemical models of semi-arid ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • I.C. Anderson M.A. Poth (1989) ArticleTitleSemiannual losses of nitrogen as NO and N2O from unburned and burned chaparral Global Biogeochem. Cycles 3 121–135

    Google Scholar 

  • S.C. Barro S.G. Conard (1991) ArticleTitleFire effects on California chaparral systems: an overview Environ. Int. 17 135–149 Occurrence Handle10.1016/0160-4120(91)90096-9

    Article  Google Scholar 

  • H.F. Birch (1958) ArticleTitleThe effect of soil drying on humus decomposition and nitrogen availability Plant Soil 4 IssueID10 9–31

    Google Scholar 

  • N.L. Christensen C.H. Muller (1975) ArticleTitleEffects of fire on factors controlling plant growth in Adenostoma chaparral Ecol. Monogr. 45 29–55

    Google Scholar 

  • E.A. Davis (1989) ArticleTitlePrescribed fire in Arizona chaparral: effects on stream water quality For. Ecol. Manage. 26 189–206 Occurrence Handle10.1016/0378-1127(89)90120-5

    Article  Google Scholar 

  • S.J. Del Grosso D.S. Ojima W.J. Parton A.R. Mosier G.A. Peterson D.S. Schimel (2002) ArticleTitleSimulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model Environ. Pollut. 116 S75–S83

    Google Scholar 

  • S.J. Del Grosso W.J. Parton A.R. Mosier M.D. Hartman J. Brenner D.S. Ojima D.S. Schimel (2001) Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model M. Schaffer L. Ma S. Hansen (Eds) Modeling Carbon and Nitrogen Dynamics for Soil Management CRC Press Boca Raton, Florida 303–332

    Google Scholar 

  • S.J. Del Grosso J. Stephen W.J. Parton A.R. Mosier D.S. Ojima M.D. Hartman (2000) Interaction of soil carbon sequestration and N2O flux with different land use practices J. Ham ParticleVan A.P.M. Baede L.A. Meyer R. Ybema (Eds) Non-CO2 Greenhouse Gases: Scientific Understanding, Control and Implementation Kluwer Academic Publishers Dordrecht, The Netherlands 303–311

    Google Scholar 

  • M.E. Fenn J.S. Baron E.B. Allen H.M. Rueth K.R. Nydick L. Geiser W.D. Bowman J.O. Sickman T. Meixner D.W. Jihnson P. Neitlich (2003a) ArticleTitleEcological effects of nitrogen deposition in the western United States BioScience 53 404–420

    Google Scholar 

  • M.E. Fenn R. Haeuber G.S. Tonnesen J.S. Baron S. Grossman-Clarke D. Hope D.A. Jaffe S. Copeland L. Geiser H.M. Rueth J.O. Sickman (2003b) ArticleTitleNitrogen emissions, deposition, and monitoring in the western United States BioScience 53 391–403

    Google Scholar 

  • M.E. Fenn M.A. Poth (1999) ArticleTitleTemporal and spatial trends in streamwater nitrate concentrations in the San Bernardino Mountains, southern California J. Environ. Qual. 28 822–836

    Google Scholar 

  • M.E. Fenn M.A. Poth (2004) ArticleTitleMonitoring nitrogen deposition in throughfall using ion exchange resin columns: a field test in the San Bernardino Mountains J. Environ. Qual. 33 2007–2014

    Google Scholar 

  • M.E. Fenn M.A. Poth J.D. Aber J.S. Baron B.T. Bormann D.W. Johnson A.D. Lemly S.G. McNulty D.F. Ryan R. Stottlemyer (1998) ArticleTitleNitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies Ecol. Appl. 8 706–733

    Google Scholar 

  • M.E. Fenn M.A. Poth A. Bytnerowicz J.O. Sickman B. Takemoto (2003c) Effects of ozonenitrogen deposition, and other stressors on montane ecosystems in the Sierra Nevada A. Bytnerowicz M.J. Arbaugh R. Alonso (Eds) Ozone Air Pollution in the Sierra Nevada: Distribution and Effects on Forests, Vol. 2: Developments in Environmental Sciences Elsevier Amsterdam, The Netherlands 111–155

    Google Scholar 

  • M.E. Fenn M.A. Poth D.W. Johnson (1996) ArticleTitleEvidence for nitrogen saturation in the San Bernardino Mountains in southern California For. Ecol. Manage. 82 211–230 Occurrence Handle10.1016/0378-1127(95)03668-7

    Article  Google Scholar 

  • N. Fierer J.P. Schimel (2002) ArticleTitleEffects of drying-rewetting frequency on soil carbon and nitrogen transformations Soil Biol. Biochem. 34 777–787 Occurrence Handle10.1016/S0038-0717(02)00007-X

    Article  Google Scholar 

  • N. Fierer J.P. Schimel (2003) ArticleTitleA proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil Soil Sci. Soc. Am. J. 67 798–805

    Google Scholar 

  • N. Fierer J.P. Schimel P.A. Holden (2003) ArticleTitleInfluence of drying-rewetting frequency on soil bacterial community structure Microb. Ecol. 45 63–71 Occurrence Handle10.1007/s00248-002-1007-2

    Article  Google Scholar 

  • A. Franzluebbers R. Haney C. Honeycutt H. Schomberg F. Hons (2000) ArticleTitleFlush of carbon dioxide following rewetting of dried soil relates to active organic pools Soil Sci. Soc. Am. J. 64 613–623

    Google Scholar 

  • J.N. Galloway W.H. Schlesinger H. Levy A. Michaels J.L. Schnoor (1995) ArticleTitleNitrogen-fixation – anthropogenic enhancement – environmental response Global Biogeochem. Cycles 9 235–252 Occurrence Handle10.1029/95GB00158

    Article  Google Scholar 

  • J.T. Gary W.H. Schlesinger (1981) ArticleTitleBiomass, production, and litterfall in the coastal sage scrub of southern California Am. J. Bot. 68 24–33

    Google Scholar 

  • J.T. Gary W.H. Schlesinger (1983) ArticleTitleNutrient use by evergreen and deciduous shrubs in southern California. II. Experimental investigations of the relationship between growth nitrogen uptake and nitrogen availability J. Ecol. 71 43–56

    Google Scholar 

  • R.C. Graham H.B. Wood (1991) ArticleTitleMorphological development and clay redistribution in lysimeter soils under chaparral and pine Soil Sci. Soc. Am. J. 55 1638–1646

    Google Scholar 

  • J.M. Holloway R.A. Dahlgren (2001) ArticleTitleSeasonal and event-scale variations in solute chemistry for four Sierra Nevada catchments J. Hydrol. 250 106–121 Occurrence Handle10.1016/S0022-1694(01)00424-3

    Article  Google Scholar 

  • Huntington G.L. and Akeson M.A. 1987. Soil Resource Inventory of Sequoia National Park Central Part. Dept. of Interior National Park ServiceCalifornia, U.S. CA Order No. 8005- 2-0002.

  • J.E. Keeley C.J. Fotheringham (1998) ArticleTitleMechanism of smoke-induce seed germination into a post-fire chaparral annual J. Ecol. 86 27–36 Occurrence Handle10.1046/j.1365-2745.1998.00230.x

    Article  Google Scholar 

  • J.E. Keeley C.J. Fotheringham M. Morais (1999) ArticleTitleReexamining fire suppression impacts on brushland fire regimes Science 284 1829–1832 Occurrence Handle10.1126/science.284.5421.1829

    Article  Google Scholar 

  • R.H. Kelly W.J. Parton M.D. Hartman L.K. Stretch D.S. Ojima D.S. Schimel (2000) ArticleTitleIntra and interannual variability of ecosystem processes in shortgrass steppe J. Geophys. Res. Atmos. 105 20,093–20,100

    Google Scholar 

  • E.C. Krug D. Winstanley (2002) ArticleTitleThe need for comprehensive and consistent treatment of the nitrogen cycle in nitrogen cycling and mass balance studies: I Terr. Nitrogen Cycle. Sci. Total Environ. 293 1–29

    Google Scholar 

  • J. Kummerow J.V. Alexander J.W. Neel K. Fishbeck (1978) ArticleTitleSymbiotic nitrogen fixation in Ceanothus roots Am. J. Bot. 65 63–69

    Google Scholar 

  • X. Li R.B. Ambrose R. Araujo (2004) ArticleTitleModeling mineral nitrogen export: from a forest terrestrial ecosystem to streams Trans. ASAE 47 727–739

    Google Scholar 

  • T. Meixner R.C. Bales (2003) ArticleTitleHydrochemical modeling of coupled C and N cycling in high-elevation catchments: Importance of snow cover Biogeochemistry 62 289–308 Occurrence Handle10.1023/A:1021118922787

    Article  Google Scholar 

  • T. Meixner M.E. Fenn (2004) ArticleTitleBiogeochemical budgets in a Mediterranean catchment with high rates of atmospheric N deposition – importance of scale and temporal asynchrony Biogeochemistry 70 331–356 Occurrence Handle10.1007/s10533-003-4106-3

    Article  Google Scholar 

  • Miller A.E., Schimel J.P., Meixner T., Sickman J.O. and Melack J.M. 2005. Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biol. Biochem. (in press).

  • H.A. Mooney J. Kummerow A.W. Johnson D.J. Parsons S. Keeley A. Hoffmann R.I. Hays J. Giliberto C. Chu (1977) The producers – their resources and adaptive responses H.A. Mooney (Eds) Convergent Evolution in the Chile and California Mediterranean Climate Ecosystems Dowden, Hutchinson and Ross Stroudsburg, Pennsylvania 85–143

    Google Scholar 

  • H.A. Mooney P.W. Rundel (1979) ArticleTitleNutrient relations of the evergreen shrub, Adenostoma fasciculatum, in the California chaparral Bot. Gaz. 140 109–113 Occurrence Handle10.1086/337064

    Article  Google Scholar 

  • J.E. Nash J.V. Sutcliffe (1970) ArticleTitleRiver flow forecasting through conceptional models: 1. A discussion of principles J. Hydrol. 10 282–290

    Google Scholar 

  • Parsons D.J. and Stohlgren T.J. 1986. Long term chaparral research in Sequoia National Park. In: Devries J.J. (eds), Proceedings of the Chaparral Ecosystems Research Conference. May 16-17, 1985, Santa BarbaraCalifornia. California Water Resources Center, Davis Californiapp. 107–114.

  • W.J. Parton M. Hartman D.S. Ojima D.S. Schimel (1998) ArticleTitleDAYCENT and its land surface submodel: description and testing Glob. Planet Change 19 35–48

    Google Scholar 

  • Parton W.J., Ojima D.S., Cole C.V. and Schimel D.S. 1994. A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. In: Quantitative Modeling of Soil Forming Processes (Special Pub. 39)Soil Science Society of America, Madison, Wisconsin, pp. 147–167.

  • P.J. Riggan S. Goode P.M. Jacks R.N. Lockwood (1988) ArticleTitleInteraction of fire and community development in Chaparral of southern California Ecol. Monogr. 58 155–176

    Google Scholar 

  • P.J. Riggan R.N. Lockwood E.N. Lopez (1985) ArticleTitleDeposition and processing of airborne nitrogen pollutants in Mediterranean-type ecosystems of southern California Environ. Sci. Technol. 19 781–789 Occurrence Handle10.1021/es00139a003

    Article  Google Scholar 

  • P.J. Riggan R.N. Lockwood P.M. Jacks C.G. Colver (1994) ArticleTitleEffects of fire severity on nitrate mobilization in watersheds subject to chronic atmospheric deposition Environ. Sci. Technol. 28 369–375 Occurrence Handle10.1021/es00052a005

    Article  Google Scholar 

  • P.W. Rundel D.J. Parsons (1979) ArticleTitleStructural changes in chamise (Adenostoma fasciculatum) along a fire induced age gradient J. Range Manage. 32 462–466

    Google Scholar 

  • P.W. Rundel D.J. Parsons (1980) ArticleTitleNutrient changes in two chaparral shrubs along a fire-induced age gradient Am. J. Bot. 67 51–58

    Google Scholar 

  • M.G. Schaap F.J. Leij Martinus Van Genuchten (2001) ArticleTitleRosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions J. Hydrol. 251 IssueID34 163–176

    Google Scholar 

  • J.P. Schimel (2001) Biogeochemical models: implicit vs. explicit microbiology E.D. Schulze S.P. Harrison M. Heimann E.A. Holland J.J. Lloyd I.C. Prentice D. Schimel (Eds) Global Biogeochemical Cycles in the Climate Systems Academic Press New York 177–183

    Google Scholar 

  • W.H. Schlesinger D.S. Gill (1980) ArticleTitleBiomass, production, and changes in the availability of lightwater and nutrients during the development of pure stands of the chaparral shrub, Ceanothus megacarpus, after fire Ecology 61 781–789

    Google Scholar 

  • W.H. Schlesinger J.T. Gray D.S. Gill B.E. Mahall (1982) ArticleTitleCeanothus megacarpus chaparral: a synthesis of ecosystem processes during development and annual growth Bot. Rev. 48 71–117

    Google Scholar 

  • J.O. Sickman J.L. Stoddard J.M. Melack (2002) ArticleTitleRegional analysis of inorganic nitrogen yield and retention in high-elevation ecosystems of the Sierra Nevada and Rocky Mountains Biogeochemistry 57 IssueID58 41–374

    Google Scholar 

  • C.A. Thanos P.W. Rundel (1995) ArticleTitleFire-followers in chaparral: nitrogenous compounds trigger seed germination J. Ecol. 83 207–216

    Google Scholar 

  • A.L. Ulery R.C. Graham O.A. Chadwick H.B. Wood (1995) ArticleTitleDecade-scale changes of soil carbon, nitrogen and exchangeable cations under chaparral and pine Geoderma 65 121–134 Occurrence Handle10.1016/0016-7061(94)00034-8

    Article  Google Scholar 

  • M.W. Williams J.S. Baron N. Caine R. Sommerfeld R. Sanford (1996) ArticleTitleNitrogen saturation in the Rocky Mountains Environ. Sci. Technol. 30 640–646 Occurrence Handle10.1021/es950383e

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Meixner, T., Sickman, J.O. et al. Decadal-scale Dynamics of Water, Carbon and Nitrogen in a California Chaparral Ecosystem: DAYCENT Modeling Results. Biogeochemistry 77, 217–245 (2006). https://doi.org/10.1007/s10533-005-1391-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-005-1391-z

Keywords

Navigation