Skip to main content

Advertisement

Log in

NO Gas Loss from Biologically Crusted Soils in Canyonlands National Park, Utah

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract.

In this study, we examined N gas loss as nitric oxide (NO) from N-fixing biologically crusted soils in Canyonlands National Park, Utah. We hypothesized that NO gas loss would increase with increasing N fixation potential of the biologically crusted soil. NO fluxes were measured from biologically crusted soils with three levels of N fixation potential (Scytonema-Nostoc-Collema spp. (dark)>Scytonema-Nostoc-Microcoleus spp. (medium)>Microcoleus spp. (light)) from soil cores and field chambers. In both cores and field chambers there was a significant effect of crust type on NO fluxes, but this was highly dependent on season. NO fluxes from field chambers increased with increasing N fixation potential of the biologically crusted soils (dark>medium>light) in the summer months, with no differences in the spring and autumn. Soil chlorophyllasis Type a content (an index of N fixation potential), percent N, and temperature explained 40% of the variability in NO fluxes from our field sites. Estimates of annual NO loss from dark and light crusts was 0.04-0.16 and 0.02-0.11-N/ha/year. Overall, NO gas loss accounts for approximately 3-7% of the N inputs via N fixation in dark and light biologically crusted soils. Land use practices have drastically altered biological soil crusts communities over the past century. Livestock grazing and intensive recreational use of public lands has resulted in a large scale conversion of dark cyanolichen crusts to light cyanobacterial crusts. As a result, changes in biologically crusted soils in arid and semi-arid regions of the western US may subsequently impact regional NO loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • N.N. Barger (2003) Biogeochemical cycling and N dynamics of biological soil crusts in a semi-arid ecosystem Ph.D. Colorado State University Fort Collins, CO

    Google Scholar 

  • D.M. Barr (1999) Biotic and abiotic regulation of nitrogen dynamics in biologically crusted soils M.S. Northern Arizona University Flagstaff, AZ

    Google Scholar 

  • J. Belnap (2001) Factors influencing nitrogen fixation and nitrogen release in biologically crusted soils J. Belnap O.L. Lange (Eds) Biologically Crusted Soils: StructureFunction, and Management Springer-Verlag Berlin Heidelberg 241–262

    Google Scholar 

  • J. Belnap (2002) ArticleTitleNitrogen fixation in biologically crusted soils from southeast UtahUSA Biol. Fertil. Soils 35 128–135 Occurrence Handle10.1007/s00374-002-0452-x

    Article  Google Scholar 

  • S.A. Billings S.M. Schaeffer R.D. Evans (2002) ArticleTitleTrace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO2 Soil Biol. Biochem. 34 1777–1784 Occurrence Handle10.1016/S0038-0717(02)00166-9

    Article  Google Scholar 

  • A. Bollman R. Conrad (1998) ArticleTitleInfluence of O2 availability on NO and N2O release by nitrification and denitrification in soils Global Change Biol. 4 387–396 Occurrence Handle10.1046/j.1365-2486.1998.00161.x

    Article  Google Scholar 

  • M.A. Bowker S.C. Reed J. Belnap S.L. Phillips (2002) ArticleTitleTemporal variation in community composition, pigmentation, and Fv/Fm of desert cyanobacterial soil crusts Microb. Ecol. 43 13–25 Occurrence Handle10.1007/s00248-001-1013-9 Occurrence Handle11984625

    Article  PubMed  Google Scholar 

  • L. Breiman J.H. Friedman R.A. Olshen J.S. Stone (1998) Classification and Regression TreeReprint Chapman & Hall/CRC Boca Raton, FL

    Google Scholar 

  • E.A. Davidson W. Kingerlee (1997) ArticleTitleA global inventory of nitric oxide emissions from soils Nutr. Cycl. Agroecosyst. 48 37–50 Occurrence Handle10.1023/A:1009738715891

    Article  Google Scholar 

  • E.A. Davidson P.A. Matson P.M. Vitousek R. Riley K. Dunkin G. García-Méndez J.M. Maass (1993) ArticleTitleProcesses regulating soil emissions of NO and N2O in a seasonally dry tropical forest Ecology 74 130–139

    Google Scholar 

  • E.A. Davidson P.M. Vitousek P.A. Matson R. Riley G. García-Méndez J.M. Maass (1991) ArticleTitleSoil emissions of nitric oxide in a seasonally dry tropical forest of Mexico J. Geophys. Res. 96 439–445

    Google Scholar 

  • G. De‘ath K.E. Fabricius (2000) ArticleTitleClassification and regression trees: a powerful yet simple technique for ecological data analysis Ecology 8 3178–3192

    Google Scholar 

  • R.D. Evans J. Belnap (1999) ArticleTitleLong-term consequences of disturbance on nitrogen dynamics in an arid ecosystem Ecology 80 150–160

    Google Scholar 

  • R.D. Evans J.R. Ehleringer (1993) ArticleTitleA break in the nitrogen cycle in arid lands? Evidence from d15N of soils Oecologia 94 314–317 Occurrence Handle10.1007/BF00317104

    Article  Google Scholar 

  • R.D. Evans O.L. Lange (2001) Biological soil crusts and ecosystem nitrogen and carbon dynamics J. Belnap O.L. Lange (Eds) Biologically Crusted Soils: StructureFunction, and Management Springer-Verlag Berlin Heidelberg 263–280

    Google Scholar 

  • M.K. Firestone E.A. Davidson (1989) Microbiological basis of NO and N2O production and consumption in soil M.O. Andreae D.S. Schimel (Eds) Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere John Wiley & Sons Ltd Chichester New York, BrisbaneToronto 7–21

    Google Scholar 

  • F. Garcia-Pichel J. Belnap (1996) ArticleTitleMicroenvironment and microscale productivity of cyanobacterial desert crusts J. Phycol. 32 774–782 Occurrence Handle10.1111/j.0022-3646.1996.00774.x

    Article  Google Scholar 

  • F. Garcia-Pichel J. Belnap (2001) Small scale environments and distribution of biologically crusted soils J. Belnap O. Lange (Eds) Biologically Crusted Soils: StructureFunction, and Management Spring-Verlag Berlin Heidelberg 193–202

    Google Scholar 

  • F. Garcia-Pichel J. Belnap S. Neuer F. Schanz (2003b) ArticleTitleEstimates of global cyanobacterial biomass and its distribution Algol. Stud. 109 213–227

    Google Scholar 

  • F. Garcia-Pichel S.L. Johnson D. Youngkin J. Belnap (2003a) ArticleTitleSmall-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau Microb. Ecol. 46 312–321 Occurrence Handle10.1007/s00248-003-1004-0

    Article  Google Scholar 

  • M. Godde R. Conrad (2000) ArticleTitleInfluence of soil properties on the turnover of nitric oxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture Biol. Fertil. Soils 32 120–128 Occurrence Handle10.1007/s003740000247

    Article  Google Scholar 

  • P.M. Groffman J.M. Tiedje (1988) ArticleTitleDenitrification hysteresis during wetting and drying cycles in soil Soil Sci. Soc. Am. J. 52 1626–1629

    Google Scholar 

  • A.E. Hartley W.H. Schlesinger (2000) ArticleTitleEnvironmental controls on nitric oxide emission from northern Chihuahuan desert soils Biogeochemistry 50 279–300 Occurrence Handle10.1023/A:1006377832207

    Article  Google Scholar 

  • C. Johansson (1984) ArticleTitleField measurements of emission of nitric oxide from fertilized and unfertilized forest soils in Sweden J. Atmos. Chem. 1 429–442 Occurrence Handle10.1007/BF00053804

    Article  Google Scholar 

  • C. Johansson H. Rodhe E. Sanhueza (1988) ArticleTitleEmission of NO in a tropical savanna and a cloud forest during the dry season J. Geophys. Res. 93 7180–7192

    Google Scholar 

  • K. Jones W.D.P Stewart (1969) ArticleTitleNitrogen turnover in marine and brackish habitats. III. The Production of extracellular nitrogen by Calothrix scopulorum J. Mar. Biol. Assoc. U.K. 49 475–488

    Google Scholar 

  • S. Jousset R.M. Tabachow J.J. Peirce (2001) ArticleTitleSoil nitric oxide emission from nitrification and denitrification J. Environ. Eng. – ASCE 127 322–328

    Google Scholar 

  • U. Karsten F. Garcia-Pichel (1996) ArticleTitleCarotenoids and mycosporine-like amino acid compounds in members of the genus Microcoleus (Cyanobacteria): a chemosystematic study Syst. Appl. Microbiol. 19 285–294

    Google Scholar 

  • Lammers D.A. 1991. Soil Surveys of Canyonlands Area, Utah, Parts of Grand and San Juan Counties. USDA Soil Conservation Service.

  • R.E. Martin G.P. Asner R.J. Ansley A.R. Mosier (2003) ArticleTitleEffects of woody vegetation encroachment on soil nitrogen oxide emission in a temperate savanna Ecol. Appl. 13 897–910

    Google Scholar 

  • R.E. Martin M.C. Scholes A.R. Mosier D.S. Ojima E.A. Holland W.J. Parton (1998) ArticleTitleControls on annual emissions of nitric oxide from soils of the Colorado shortgrass steppe Global Biogeochem. Cycles 12 81–91 Occurrence Handle10.1029/97GB03501

    Article  Google Scholar 

  • H.F. Mayland T.H. MacIntosh W.H. Fuller (1966) ArticleTitleFixation of isotopic nitrogen on a semiarid soil by algal crust organisms Soil Sci. Soc. Am. Proceed. 30 56–60

    Google Scholar 

  • E.A. Paul F.E. Clark (1996) Soil Microbiology and Biochemistry, 2nd edn Academic Press San Diego

    Google Scholar 

  • W.T. Peterjohn (1991) ArticleTitleDenitrification: enzyme content and activity in desert soils Soil Biol. Biochem. 23 845–855 Occurrence Handle10.1016/0038-0717(91)90096-3

    Article  Google Scholar 

  • W.T. Peterjohn W.H. Schlesinger (1990) ArticleTitleNitrogen loss from deserts in the southwestern United States Biogeochemistry 10 67–79 Occurrence Handle10.1007/BF00000893

    Article  Google Scholar 

  • W.T. Peterjohn W.H. Schlesinger (1991) ArticleTitleFactors controlling denitrification in a Chihuahuan Desert ecosystem Soil Sci. Soc. Am. J. 55 1694–1701

    Google Scholar 

  • M. Poth D.D. Focht (1985) ArticleTitle 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier dentrification Appl. Environ. Microbiol. 49 1134–1141

    Google Scholar 

  • E. Sanhueza W.M. Hao D. Scharffe L. Donoso P.J. Cruzen (1990) ArticleTitleN2O and NO emissions from soils of the northern part of the Guayana ShieldVenezuela J. Geophys. Res. 95 481–422

    Google Scholar 

  • M.C. Scholes R. Martin R.J. Scholes D. Parsons E. Winsted (1997) ArticleTitleNO and N2O emissions from savanna soils following the first simulated rains of the season Nutr. Cycl. Agroecosyst. 48 115–122 Occurrence Handle10.1023/A:1009781420199

    Article  Google Scholar 

  • D.R. Smart J.M. Stark V. Diego (1999) ArticleTitleResource limitation to nitric oxide emission from a sagebrush-steppe ecosystem Biogeochemistry 47 63–86

    Google Scholar 

  • R.A. Virginia W.M. Jarrell E. Franco-Vizcaino (1982) ArticleTitleDirect measurement of denitrification in a Prosopis (Mesquite) dominated Sonoran Desert ecosystem Oecologia 53 120–122 Occurrence Handle10.1007/BF00377145

    Article  Google Scholar 

  • N.E. West J. Skujins (1977) ArticleTitleThe nitrogen cycle of North American cold-winter semi-desert ecosystems Oecol. Plant. 12 45–53

    Google Scholar 

  • E.J. Williams F.C. Fehsenfeld (1991) ArticleTitleMeasurement of soil nitrogen oxide emissions at three North American ecosystems J. Geophys. Res. 96 1033–1042

    Google Scholar 

  • E.J. Williams G.L. Hutchinson F.C. Fehsenfeld (1992) ArticleTitleNO x N2O emissions from soil Global Biogeochem. Cycles 6 351–388

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nichole N. Barger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barger, N.N., Belnap, J., Ojima, D.S. et al. NO Gas Loss from Biologically Crusted Soils in Canyonlands National Park, Utah. Biogeochemistry 75, 373–391 (2005). https://doi.org/10.1007/s10533-005-1378-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-005-1378-9

Keywords

Navigation