Skip to main content
Log in

Fluxes of dissolved carbon dioxide and inorganic carbon from an upland peat catchment: implications for soil respiration

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract.

This study uses long-term water chemistry records for a circum-neutral peat stream to reconstruct a 7-year record of dissolved CO2 and DIC flux from the catchment. Combining catchment flux with a knowledge of in-stream metabolism and gas evasion from the stream surface enables an estimate of the dissolved CO2 content of water emerging from the peat profile to be made; furthermore, these can be used to estimate soil CO2 respiration. In this way multi-annual records of CO2 production can be reconstructed, and therefore inter-annual controls on production examined. The results suggest that:(i) Stream evasion of CO2 within the catchment varied between 80 and 220 g C/m of stream/yr, while in-stream metabolism produces between 1.0 and 2.9 g C/m of stream/yr;

Export of dissolved CO2 emerging from the soil profile, above that expected at equilibrium with the atmosphere, varies between 9.6 and 25.6 tonnes,C/km2/yr; and

The export of dissolved CO2 implies a soil respiration rate of between 64.2 and 94.9 tonnes C/km2/yr.

The inter-annual variation in both dissolved CO2 flux and soil CO2 respiration suggests that severe drought has no long-term effect on CO2 production and that temperature-based models of soil CO2 respiration will be adequate in all but the severest of summer droughts. The inter-annual variation in CO2 flux shows that CO2 production is decoupled from dissolved organic carbon (DOC) production. The decoupling of DOC and dissolved CO2 production shows that enzymatic-latch production of DOC is an anaerobic process and will not increase soil CO2 respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Archer D. Stewart (1995) ArticleTitleThe installation and use of a snow pillow to monitor snow water equivalent J. Inst. Water Environ. Manage. 9 221–230

    Google Scholar 

  2. R.B. Bird W.E. Stewart E.N. Lightfoot (1960) Transport phenomena Wiley New York

    Google Scholar 

  3. J. Bubier A. Costello T. Moore N.T. Roulet K. Savage (1993) ArticleTitleMicrotopography and methane flux in boreal peatlands, Northern OntarioCanada Can. J. Bot. 71 1056–1063

    Google Scholar 

  4. T.P. Burt J.K. Adamson A.M.J. Lane (1998) ArticleTitleLong-term rainfall and streamflow records for north central England: putting the Environmental Change Network site at Moor HouseUpper Teesdalein context Hydrolog. Sci. J. 43 775–787

    Google Scholar 

  5. M.G.R. Cannell R. Milne K.J. Hargreaves T.A.W. Brown M.M. Cruickshank R.I. Bradley T. Spencer D. Hope M.F. Billett W.N. Adger S. Subak (1999) ArticleTitleNational inventories of terrestrial carbon sources and sinks: the UK experience Climatic Change 42 505–538 Occurrence Handle10.1023/A:1005425807434 Occurrence Handle1:CAS:528:DyaK1MXmtFGitLo%3D

    Article  CAS  Google Scholar 

  6. S.J. Chapman M. Thurlow (1996) ArticleTitleThe influence of climate on CO2 and CH4 emissions from organic soils Agric. Forest Meteorol. 7 205–217 Occurrence Handle10.1016/0168-1923(95)02283-X

    Article  Google Scholar 

  7. T.R. Christensen I.C. Prentice J. Kaplan A. Haxeltine S. Sitch (1996) ArticleTitleMethane flux from northern wetlands and tundra: an ecosystem source modelling approach Tellus 48 652–661 Occurrence Handle10.1034/j.1600-0889.1996.t01-4-00004.x

    Article  Google Scholar 

  8. R.S. Clymo D.M.E. Pearce (1995) ArticleTitleMethane and carbon dioxide production in, transport throughand efflux from a peatland Philos. Trans. R. Soc. A 350 249–259

    Google Scholar 

  9. R.S. Clymo E.J.F. Reddaway (1971) ArticleTitleProductivity of sphagnum (bog-moss) and peat accumulation Hydrobiologia 12 181–192

    Google Scholar 

  10. A.K. Covington M.A. Ferra R.A. Robinson (1977) ArticleTitleIonic product and enthalpy of ionisation of water from electromotive force measurements J. Chem. Soc. Faraday Trans. 1 1721–1730

    Google Scholar 

  11. D.T. Crisp G. Howson (1982) ArticleTitleEffect of air temperature upon mean water temperature in streams in the north Pennines and English Lake District Freshwater Biol. 12 359–367

    Google Scholar 

  12. J.C. Dawson M.F. Billet C. Neal S. Hill (2002) ArticleTitleA comparison of particulatedissolved and gaseous carbon in two contrasting upland streams in the UK J. Hydrol. 257 226–246 Occurrence Handle10.1016/S0022-1694(01)00545-5 Occurrence Handle1:CAS:528:DC%2BD38Xht1Olt7w%3D

    Article  CAS  Google Scholar 

  13. J.J.C. Dawson D. Hope M.S. Cresser M.F. Billet (1995) ArticleTitleDownstream changes in free carbon dioxide in an upland catchment from Northeastern Scotland J. Environ. Qual. 24 699–706 Occurrence Handle1:CAS:528:DyaK2MXntFOqurg%3D

    CAS  Google Scholar 

  14. M.G. Evans T.P. Burt J. Holden J.K. Adamson (1999) ArticleTitleRunoff generation and water table fluctuations in blanket peat: evidence from UK data spanning the dry summer of 1995 J. Hydrol. 221 141–160 Occurrence Handle10.1016/S0022-1694(99)00085-2

    Article  Google Scholar 

  15. C. Freeman C.D. Evans D.T. Montieth B. Reynolds N. Fenner (2001a) ArticleTitleExport of organic carbon from peat soils Nature 412 785–786 Occurrence Handle10.1038/35090628 Occurrence Handle1:CAS:528:DC%2BD3MXms1agu70%3D

    Article  CAS  Google Scholar 

  16. C. Freeman N. Ostle H. Kang (2001b) ArticleTitleAn enzymic latch on a global carbon store – a shortage of oxygen locks up carbon in peatlands by restraining a single enzyme Nature 409 149 Occurrence Handle10.1038/35051650 Occurrence Handle1:CAS:528:DC%2BD3MXlvVyltg%3D%3D

    Article  CAS  Google Scholar 

  17. E.N. Fuller P.D. Schettler J.C. Giddings (1966) ArticleTitleA new method for prediction of binary gas-phase diffusion coefficients Ind. Eng. Chem. 58 19–27 Occurrence Handle10.1021/ie50677a007

    Article  Google Scholar 

  18. F.G.R. Gimblett C.B. Monk (1954) ArticleTitleEMF studies of electrolytic dissociation, part 7. Some alkali and alkaline earth metal hydroxides in water Trans. Faraday Soc. 76 964–972

    Google Scholar 

  19. H.S. Harned R. Davis SuffixJr. (1943) ArticleTitleThe ionisation constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0–50 °C J. Am. Chem. Soc. 65 2030–2037 Occurrence Handle10.1021/ja01250a059 Occurrence Handle1:CAS:528:DyaH2cXhtFE%3D

    Article  CAS  Google Scholar 

  20. H.S. Harned S.R. Scholes (1941) ArticleTitleThe ionisation constant of HCO3 from 0–50 °C J. Am. Chem. Soc. 63 1706–1709 Occurrence Handle10.1021/ja01851a058 Occurrence Handle1:CAS:528:DyaH3MXjt1Srtw%3D%3D

    Article  CAS  Google Scholar 

  21. D. Hope M.F. Billet M.S. Cresser (1997) ArticleTitleA review of the export of carbon in river water: fluxes and processes Environ. Pollut. 84 301–324 Occurrence Handle10.1016/0269-7491(94)90142-2

    Article  Google Scholar 

  22. D. Hope S.M. Palmer M.F. Billet J.C. Dawson (2001) ArticleTitleCarbon dioxide and methane oxidation evasion from a temperate peatland stream Limnol. Oceanogr. 46 847–857 Occurrence Handle1:CAS:528:DC%2BD3MXkvFeksro%3D

    CAS  Google Scholar 

  23. R.L. Jacobsen D. Langmuir (1974) ArticleTitleDissociation constants of calcite and CaHCO3+ from 0–50 °C Geochim. Cosmochim. Acta 38 301–318 Occurrence Handle10.1016/0016-7037(74)90112-4

    Article  Google Scholar 

  24. G.A.L. Johnson K. Dunham (1963) The Geology of Moor House Nature Conservancy Council HMSO, London

    Google Scholar 

  25. J.B. Jones P.J. Mulholland (1998) ArticleTitleCarbon dioxide variation in a hardwood forest stream: an integrative measure of whole catchment soil respiration Ecosystems 1 183–196 Occurrence Handle10.1007/s100219900014 Occurrence Handle1:CAS:528:DC%2BD3cXptFejtQ%3D%3D

    Article  CAS  Google Scholar 

  26. L.K. Kabwe M.J. Hendry G.W. Wilson J.R. Lawerence (2002) ArticleTitleQuantifying CO2 fluxes from soil surfaces to the atmosphere J. Hydrol. 260 1–14 Occurrence Handle10.1016/S0022-1694(01)00601-1 Occurrence Handle1:CAS:528:DC%2BD38Xis1agtrg%3D

    Article  CAS  Google Scholar 

  27. H. Kang C. Freeman (1999) ArticleTitlePhosphatase and arylsulphatase activities in wetland soils – annual variation and controlling factors Soil Biol. Biochem. 31 449–454 Occurrence Handle10.1016/S0038-0717(98)00150-3 Occurrence Handle1:CAS:528:DyaK1MXitVOqtr0%3D

    Article  CAS  Google Scholar 

  28. P.S. Liss P.G. Slater (1974) ArticleTitleFlux of gases across the air–sea interface Nature 247 181–184 Occurrence Handle1:CAS:528:DyaE2cXktVGgtrw%3D

    CAS  Google Scholar 

  29. J Lloyd J.A. Taylor (1994) ArticleTitleOn the temperature dependence of soil respiration Funct. Ecol. 8 315–323

    Google Scholar 

  30. D. Lloyd K.L. Thomas J. Benstead K.L. Davies S.H. Lloyd J.R.M. Arah K.D. Stephen (1998) ArticleTitleMethanogenesis and CO2 exchange in an ombrotrophic peat bog Atmos. Environ. 32 3229–3238 Occurrence Handle10.1016/S1352-2310(97)00481-0 Occurrence Handle1:CAS:528:DyaK1cXltFOhsb0%3D

    Article  CAS  Google Scholar 

  31. R.J. Millington J.P. Quirk (1961) ArticleTitlePermeability of porous solids Trans. Faraday Soc. 57 1200–1207 Occurrence Handle1:CAS:528:DyaF38Xkt1Cisg%3D%3D

    CAS  Google Scholar 

  32. R. Milne T.A. Brown (1997) ArticleTitleCarbon in the vegetation and soils of Great Britain J. Environ. Manage. 49 413–433 Occurrence Handle10.1006/jema.1995.0118

    Article  Google Scholar 

  33. C. Neal W.A. House K. Down (1998) ArticleTitleAn assessment of excess carbon dioxide partial pressure in natural waters based on pH and alkalinity measurements Sci. Total Environ. 210/211 173–185 Occurrence Handle10.1016/S0048-9697(98)00011-4 Occurrence Handle1:CAS:528:DyaK1cXitlaru7o%3D

    Article  CAS  Google Scholar 

  34. H.H. Neumann G. den Hartog K.M. Kling A.C. Chipanshi (1994) ArticleTitleCarbon dioxide fluxes over a raised open bog at Kinosheo Lake tower site during the Northern Wetlands Study (NOWES) J. Geophys. Res. 99 1529–1541 Occurrence Handle10.1029/93JD01360 Occurrence Handle1:CAS:528:DyaK2cXktl2msrk%3D

    Article  CAS  Google Scholar 

  35. E.J. Reardon D. Langmuir (1974) ArticleTitleThermodynamic properties of the ion pairs MgCO3 and CaCO3 from 10 to 50 °C Am. J. Sci. 274 599–612 Occurrence Handle1:CAS:528:DyaE2cXkvVaqurk%3D

    CAS  Google Scholar 

  36. D.L. Rowell (1994) Soil Science: Methods and Applications Longman Harlow, UK

    Google Scholar 

  37. N.J Shurpali S.B. Verma J. Kim T.J. Arkebauer (1993) ArticleTitleSeasonal distribution of methane flux in a Minnesota peatland measured by eddy correlation J. Geophys. Res. 98 20649–20655

    Google Scholar 

  38. InstitutionalAuthorNameSmithsonian Institute (1966) Smithsonian Miscellaneous Collections, 114, 6th ed Smithsonian Institute Press Washington

    Google Scholar 

  39. W. Stumm J.J. Morgan (1995) Aquatic Chemistry John Wiley & Sons Chichester

    Google Scholar 

  40. J.M. Sykes A.M.J. Lane (1996) The United Kingdom Environmental Change Network: Protocols for Standard Measurements of Terrestrial Sites Natural Environment Research Council London 220

    Google Scholar 

  41. J.M. Waddington N.T. Roulet (1996) ArticleTitleAtmosphere-wetland carbon exchanges: scale dependency of CO2 and CH4 exchange on development topography of a peatland Global Biogeochem. Cycles 10 233–245 Occurrence Handle10.1029/95GB03871 Occurrence Handle1:CAS:528:DyaK28Xjs1Khsb8%3D

    Article  CAS  Google Scholar 

  42. D.E. Walling B.W. Webb (1985) ArticleTitleEstimating the discharge of contaminants to coastal waters by rivers: some cautionary comments Mar. Pollut. Bull. 16 488–492 Occurrence Handle10.1016/0025-326X(85)90382-0

    Article  Google Scholar 

  43. G.J. Whiting (1994) ArticleTitleCO2 exchange in the Hudson Bay Lowlands: community characteristics and multispectral reflectance properties J. Geophys. Res. 99 1519–1528 Occurrence Handle10.1029/93JD01833 Occurrence Handle1:CAS:528:DyaK2cXltFKrur0%3D

    Article  CAS  Google Scholar 

  44. F. Worrall T.P. Burt (1999) ArticleTitleA univariate model of river water nitrate time series J. Hydrol. 214 74–90 Occurrence Handle10.1016/S0022-1694(98)00249-2 Occurrence Handle1:CAS:528:DyaK1MXhvFansbo%3D

    Article  CAS  Google Scholar 

  45. F. Worrall T.P. Burt (2004) ArticleTitleTime series analysis of long term river dissolved organic carbon records Hydrol. Process. 18 893–911 Occurrence Handle10.1002/hyp.1321

    Article  Google Scholar 

  46. F. Worrall T.P. Burt J. Adamson (2004) ArticleTitleCan climate change explain increases in DOC flux from upland peat catchments Science of the Total Environment 326 95–112 Occurrence Handle10.1016/j.scitotenv.2003.11.022 Occurrence Handle1:CAS:528:DC%2BD2cXktVChsL0%3D Occurrence Handle15142769

    Article  CAS  PubMed  Google Scholar 

  47. F Worrall T.P. Burt R. Shedden (2003a) ArticleTitleLong terms records of riverine carbon flux Biogeochemistry 64 165–178 Occurrence Handle10.1023/A:1024924216148 Occurrence Handle1:CAS:528:DC%2BD3sXlslOnt74%3D

    Article  CAS  Google Scholar 

  48. Worrall F., Harriman R., Evans C.D., Watts C., Adamson J., Neal C., Tipping E., Burt T.P., Grieve I., Montieth D., Naden P.S. and Reynolds B. in press. Review of riverine DOC trends in the UK. Biogeochemistry.

  49. F. Worrall M. Reed J. Warburton T.P. Burt (2003b) ArticleTitleCarbon budget for British upland peat catchment Sci. Total Environ. 312 133–146 Occurrence Handle10.1016/S0048-9697(03)00226-2 Occurrence Handle1:CAS:528:DC%2BD3sXltlOhtrw%3D

    Article  CAS  Google Scholar 

  50. Wright J. 2003. Water quality in estuarine barrages. Unpublished Ph.D. thesis, University of Durham.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Worrall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worrall, F., Burt, T. & Adamson, J. Fluxes of dissolved carbon dioxide and inorganic carbon from an upland peat catchment: implications for soil respiration. Biogeochemistry 73, 515–539 (2005). https://doi.org/10.1007/s10533-004-1717-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-004-1717-2

Keywords

Navigation