Skip to main content

Advertisement

Log in

Denitrification and N2O emission from forested and cultivated alluvial clay soil

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract.

Restored forested wetlands reduce N loads in surface discharge through plant uptake and denitrification. While removal of reactive N reduces impact on receiving waters, it is unclear whether enhanced denitrification also enhances emissions of the greenhouse gas N2O, thus compromising the water-quality benefits of restoration. This study compares denitrification rates and N2O:N2 emission ratios from Sharkey clay soil in a mature bottomland forest to those from an adjacent cultivated site in the Lower Mississippi Alluvial Valley. Potential denitrification of forested soil was 2.4 times of cultivated soil. Using intact soil cores, denitrification rates of forested soil were 5.2, 6.6 and 2.0 times those of cultivated soil at 70, 85 and 100% water-filled pore space (WFPS), respectively. When NO3 was added, N2O emissions from forested soil were 2.2 times those of cultivated soil at 70% WFPS. At 85 and 100% WFPS, N2O emissions were not significantly different despite much greater denitrification rates in the forested soil because N2O:N2 emission ratios declined more rapidly in forested soil as WFPS increased. These findings suggest that restoration of forested wetlands to reduce NO3 in surface discharge will not contribute significantly to the atmospheric burden of N2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LMV:

Lower Mississippi Alluvial Valley

PDA:

potential denitrification assay

WFPS:

water-filled pore space

References

  1. J.A. Allen B.D. Keeland J.A. Stauturf A.F. Clewell H.E. Kennedy (2001) A guide to bottomland hardwood restoration USGS/BRD/ITR- 2000-0011 132

    Google Scholar 

  2. E.M. Baggs R.M. Rees K. Castle A. Scott K.A. Smith A.J.A. Vinten (2002) ArticleTitleNitrous oxide release from soils receiving N-rich crop residues and paper mill sludge in eastern Scotland Agric. Ecosyst. Environ. 90 109–123 Occurrence Handle10.1016/S0167-8809(01)00175-X Occurrence Handle1:CAS:528:DC%2BD38XksVSgtLc%3D

    Article  CAS  Google Scholar 

  3. A.M. Blackmer J.M. Bremner E.L. Schmidt (1980) ArticleTitleProduction of nitrous oxide by ammonia-oxidizing chemiautotrophic microorganisms in soil Appl. Environ. Microbiol. 40 1060–1066 Occurrence Handle1:CAS:528:DyaL3MXktlyktw%3D%3D

    CAS  Google Scholar 

  4. G.A. Breitenbeck A.M. Blackmer J.M. Bremner (1980) ArticleTitleEffects of different nitrogen fertilizers on emissions of nitrous oxide from soils Geophys. Res. Lett. 7 85–88 Occurrence Handle1:CAS:528:DyaL3cXhvVGju74%3D

    CAS  Google Scholar 

  5. J.R. Burford J.M. Bremner (1975) ArticleTitleRelationship between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter Soil Biol. Biochem. 7 389–394 Occurrence Handle10.1016/0038-0717(75)90055-3 Occurrence Handle1:CAS:528:DyaE28XhtlCls74%3D

    Article  CAS  Google Scholar 

  6. R.C. Dalal W. Wang G.P. Robertson W.J. Parton (2003) ArticleTitleNitrous oxide emission from Australian agricultural lands and mitigation Aust. J. Soil Res. 41 165–195 Occurrence Handle10.1071/SR02064 Occurrence Handle1:CAS:528:DC%2BD3sXktFKisr8%3D

    Article  CAS  Google Scholar 

  7. Fisk N.H. 1951. Mississippi River geology relation to river regime. American Society of Civil Engineers Transactions. Paper no: 2511, pp. 667–682.

  8. J.F. Gaskell A.M. Blackmer J.M. Bremner (1980) ArticleTitleComparison of the effects of nitratenitrite and nitric oxide on the reduction of nitrous oxide to dinitrogen by soil microorganisms Soil Sci. Soc. Am. J. 45 1124–1127

    Google Scholar 

  9. T. Granli O.C. Bockman (1994) ArticleTitleNitrous oxide emissions from agriculture Norway J. Agric. Sci. Suppl. 12

    Google Scholar 

  10. P.M. Groffman J.M. Tiedje (1988) ArticleTitleDenitrification hysteresis during wetting and drying cycles in soil Soil Sci. Soc. Am. J. 52 1626–1629 Occurrence Handle1:CAS:528:DyaL1MXhtlCiur0%3D

    CAS  Google Scholar 

  11. M.M. Hefting R. Bobbink H. de Caluwe (2003) ArticleTitleNitrous oxide emissions and denitrification in chronically nitrated-loaded riparian buffer zones J. Environ. Qual. 32 1194–1203 Occurrence Handle1:CAS:528:DC%2BD3sXlslGjtbg%3D Occurrence Handle12931872

    CAS  PubMed  Google Scholar 

  12. R.G. Hunter S.P. Faulkner (2001) ArticleTitleDenitrification potential in restored and natural hardwood wetlands Soil Sci. Soc. Am. J. 65 1865–1872 Occurrence Handle1:CAS:528:DC%2BD38Xht1Slsrk%3D

    CAS  Google Scholar 

  13. M.I. Khalil A.B. Rosenani O. Van Cleemput C.I. Fauziah J. Shamshuddin (2002) ArticleTitleNitrous oxide emissions from an ultisol of the humid tropics under Maize-Groundnut rotation J. Environ. Qual. 31 1071–1078 Occurrence Handle1:CAS:528:DC%2BD38XlslOmsLw%3D Occurrence Handle12175023

    CAS  PubMed  Google Scholar 

  14. C.A.M. Klein De R.S.P. Van Logtestijn (1996) ArticleTitleDenitrification in grassland soils in the Netherlands in relation to irrigation, N-application ratesoil water content and soil temperature Soil Biol. Biochem. 28 231–237 Occurrence Handle10.1016/0038-0717(95)00131-X

    Article  Google Scholar 

  15. D.M. Linn J.W. Doran (1984) ArticleTitleEffect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and non-tilled soils Soil Sci. Soc. Am. J. 48 1267–1272 Occurrence Handle1:CAS:528:DyaL2MXhtFaitL4%3D

    CAS  Google Scholar 

  16. P.O. MacDonald W.E. Frayer J.K. Clauser (1979) Documentation, chronology and future projections of bottomland hardwood habitat losses in the lower Mississippi alluvial plain USFWS Washington, DC 427

    Google Scholar 

  17. B.Y. Mahdun J.L. Young V.H. Freed (1986) ArticleTitleBinding of herbicides by water soluble organic materials from soil J. Environ. Qual. 15 64–68

    Google Scholar 

  18. Mitsch W.J., Day J.W. Jr. Gilliam J.W., Groffman P.M., Hey D.L., Randall G.W. and Wang N. 1999. Reducing nutrient loads, especially nitrate-nitrogen, so surface watergroundwater and the Gulf of Mexico: Topic 5 Report for the Integrated Assessment on Hypoxia in the Gulf of Mexico. NOAA Coastal Ocean OfficeSilver Spring, MD, Decision Analysis Series No. 19.

  19. W.J. Mitsch Jr. J.W Day J.W. Gilliam P.M. Groffman D.L. Hey G.W. Randall N. Wang (2001) ArticleTitleReducing nitrogen loading to the Gulf of Mexico from the Mississippi River basin: strategies to counter a persistent ecological problem BioScience 51 373–388

    Google Scholar 

  20. A.R. Mosier G.L. Hutchison (1981) ArticleTitleNitrous oxide emissions from cropped fields J. Environ. Qual. 10 169–173 Occurrence Handle1:CAS:528:DyaL3MXltVagsL0%3D

    CAS  Google Scholar 

  21. InstitutionalAuthorNameNRCS (1959) Soil Survey-Sunflower County, MississippiSeries No. 5 Natural Resource Conservation Service and Mississippi Agricultural Experiment Station Mississippi

    Google Scholar 

  22. K.L. Sahrawat D.R. Keeney (1986) Nitrous oxide emission from soils Advances in Soil Science Springer-Verlag, Inc. New York 103–143

    Google Scholar 

  23. D.L. Sanders J. Kalff (2001) ArticleTitleNitrogen retention in wetlands, lakes and rivers Hydrobiologia 443 205–212 Occurrence Handle10.1023/A:1017506914063

    Article  Google Scholar 

  24. InstitutionalAuthorNameSAS, Inc. (1998) SAS User Manual and Software SAS Inc. North CarolinaUS

    Google Scholar 

  25. A.J. Sexstone T.B. Parkin J.M. Tiedje (1985) ArticleTitleTemporal response of soil denitrification rates to rainfall and irrigation Soil Sci. Soc. Am. J. 49 99–103 Occurrence Handle1:CAS:528:DyaL2MXhtFahtrY%3D

    CAS  Google Scholar 

  26. A.J. Sexstone T.B. Parkin J.M. Tiedje (1988) ArticleTitleDenitrification response to soil wetting in aggregated and unaggregated soil Soil Biol. Biochem. 20 767–769 Occurrence Handle10.1016/0038-0717(88)90165-4 Occurrence Handle1:CAS:528:DyaL1MXit1Oquw%3D%3D

    Article  CAS  Google Scholar 

  27. M. Simek D. Elhottova F. Klimes D.W. Hopkins (2004) ArticleTitleEmissions of N2O and CO2denitrification measurements and soil properties in red clover and ryegrass stands Soil Biol. Biochem. 36 9–21 Occurrence Handle10.1016/j.soilbio.2003.08.010 Occurrence Handle1:CAS:528:DC%2BD2cXjtVWqsA%3D%3D

    Article  CAS  Google Scholar 

  28. B. Singh J.C. Ryden D.C. Whitehead (1988) ArticleTitleSome relationships between denitrification potential and fractions of organic carbon in air-dried and field moist soils Soil Biol. Biochem. 20 737–741 Occurrence Handle10.1016/0038-0717(88)90160-5

    Article  Google Scholar 

  29. J.M. Tiedje (1982) Denitrification A.L. Page (Eds) Methods of Soil Analysis, 2nd ed., Agronomy Monograph American Society of Agronomy Madison, WI

    Google Scholar 

  30. J. Tilsner N. Wrage J. Lauf G. Gebauer (2003) ArticleTitleEmission of gaseous nitrogen oxides from extensively managed grassland in NE BavariaGermany. 1. Annual budget of N2O and NO x emissions Biogeochemistry 63 229–247 Occurrence Handle10.1023/A:1023365432388 Occurrence Handle1:CAS:528:DC%2BD3sXjtVGrtr4%3D

    Article  CAS  Google Scholar 

  31. D.P. Turner G.J. Koerper M.E. Harmon J.J. Lee (1995) ArticleTitleA carbon budget for forests of the conterminous United States Ecol. Appl. 5 421–436

    Google Scholar 

  32. R.E. Turner (1998) ArticleTitleFluctuating silicate: nitrate ratios and coastal plankton food webs Proc. Natl. Acad. Sci. USA 95 13048–13051 Occurrence Handle10.1073/pnas.95.22.13048 Occurrence Handle1:CAS:528:DyaK1cXntFWkur8%3D Occurrence Handle9789038

    Article  CAS  PubMed  Google Scholar 

  33. P.F. Vinther (1984) ArticleTitleTotal denitrification and the ratio between N2O and N2 during the growth of spring barley Plant Soil 76 227–232 Occurrence Handle1:CAS:528:DyaL2cXhvFSrsbw%3D

    CAS  Google Scholar 

  34. J.T. Walker C.D. Geron J.M. Vose W.T. Swank (2002) ArticleTitleNitrogen trace gas emissions from a riparian ecosystem in southern Appalachia Chemosphere 49 1389–1398 Occurrence Handle10.1016/S0045-6535(02)00320-X Occurrence Handle1:CAS:528:DC%2BD38Xotlyms7k%3D Occurrence Handle12489736

    Article  CAS  PubMed  Google Scholar 

  35. K.L. Weier J.W. Doran J.F. Power D.T. Walters (1993) ArticleTitleDenitrification and the dinitrogen/nitrous oxide ratio as affected by soil wateravailable carbon and nitrate Soil Sci. Soc. Am. J. 57 66–72 Occurrence Handle1:CAS:528:DyaK3sXisFeqtLk%3D

    CAS  Google Scholar 

  36. A.M. Weitz E. Linder S. Frolking P.M. Crill M. Keller (2001) ArticleTitleN2O emissions from humid tropical agricultural soils: effects of soil moisturetexture and nitrogen availability Soil Biol. Biochem. 33 1077–1093 Occurrence Handle10.1016/S0038-0717(01)00013-X Occurrence Handle1:CAS:528:DC%2BD3MXksVOru70%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.A. Breitenbeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullah, S., Breitenbeck, G. & Faulkner, S. Denitrification and N2O emission from forested and cultivated alluvial clay soil. Biogeochemistry 73, 499–513 (2005). https://doi.org/10.1007/s10533-004-1565-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-004-1565-0

Keywords

Navigation