Skip to main content
Log in

Comparative endoscopic and SEM analyses and imaging for biofilm growth on porous quartz sand

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The paper presents an endoscope technique to provide a non-destructive detection and imaging of biofilms on porous sand grains without disturbing the system. This in situ observation of biofilm growth was carried out by inserting an endoscope into the reactor after introducing the substrate into a water-saturated quartz sand-packed reactor. As the microbes grew on the media surface with time, an expansion was presented in biofilm area. In this way, the growth of biofilm on porous sand grains could be continuously captured. The expanding of the biofilm image was observed, and the biofilm on the sand grains was measured by image analysis of biofilm cross-sections. In order to further identify the biofilm growth, at the end of experiment the packed reactor was dismantled and biofilms along with the aquifer material were sampled for the biofilm growth observation by the scanning electron microscopy (SEM). The biofilm thickness was also measured by image analysis of biofilm cross-sections. The results demonstrated significant spatial variations in mean biofilm thickness (106.2 ± 12.54 μm to 243.5 ± 26.53 μm) and thickness variability (0.07–0.12) using image analysis of SEM. However, the mean biofilm thickness measurements done by image analysis of SEM were about 60–82% smaller compared with those by image analysis of endoscopy. This is because of the dehydration and alteration of the biofilm material after dismantling the reactor for SEM observations. In comparison, we found that the endoscope image could provide a first-hand observation of biofilm growth without disrupting the system, while the SEM image could give a better resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Baveye A.J. Valocchi (1989) ArticleTitleAn evaluation of mathematical models of the transport of biologically reacting solutes in saturated soils and aquifers Water Resour. Res. 25 427–445

    Google Scholar 

  2. P.J. Bremer G.G. Geesey B. Drake (1992) ArticleTitleAtomic force microscopy examination of the topography of a hydrated bacterial biofilm on a copper surface Curr. Microbiol. 24 223–230

    Google Scholar 

  3. J.D. Bryers W.G. Characklis (1981) ArticleTitleEarly fouling biofilm formation in a turbulent flow system: overall kinetics Water Res. 15 483–491

    Google Scholar 

  4. B. Capdeville K.M. Nguyen (1990) ArticleTitleKinetics and modeling of aerobic and anaerobic film growth Water Sci. Technol. 22 149–170

    Google Scholar 

  5. F.R. Christensen G.H. Kristensen J. Jansen (1988) ArticleTitleBiofilm structure: an important and neglected parameter in wastewater treatment water pollution research and control Water Sci. Technol. 21 805–814

    Google Scholar 

  6. A.B. Cunningham W.G. Characklis F. Abedeen D. Crawford (1991) ArticleTitleInfluence of biofilm accumulation on porous media hydrodynamics Environ. Sci. Technol. 25 1305–1311

    Google Scholar 

  7. D. de Beer P. Stoodley F. Roe Z. Lewandowski (1994a) ArticleTitleEffects of biofilm structures on oxygen distribution and mass transport Biotechnol. Bioeng. 43 1131–1138

    Google Scholar 

  8. D. de Beer P. Stoodley F. Roe Z. Lewandowski (1994b) ArticleTitleLiquid flow in heterogeneous biofilms Biotechnol. Bioeng. 44 636–641

    Google Scholar 

  9. S. de Rosa F. Sconza L. Volterra (1998) ArticleTitleBiofilm amount estimation by fluorescein diacetate Water Res. 32 2621–2626

    Google Scholar 

  10. W.J. Drury P.S. Stewart W.G. Characklis (1993) ArticleTitleTransport of 1‐μm latex particles in Pseudomonas aeruginosa biofilms Biotechnol. Bioeng. 42 111–117

    Google Scholar 

  11. T.T. Eighmy E. Maratea P.L. Bishop (1983) ArticleTitleElectron microscopic examination of wastewater biofilm formation and structural components Appl. Environ. Microbiol. 45 1921–1931

    Google Scholar 

  12. A. Gjaltema P.A.M. Arts M.C.M. van Loosdrecht J.G. Kuenen J.J. Heijnen (1994) ArticleTitleHeterogeneity of biofilms in rotating annular reactors: occurrencestructure and consequences Biotechnol. Bioeng. 44 194–204

    Google Scholar 

  13. B.C. Hoskins L. Fevang P.D. Majors M.M. Sharma G. Georgiou (1999) ArticleTitleSelective imaging of biofilms in porous media by NMR relaxation J. Magn. Reson. 139 67–73

    Google Scholar 

  14. H.M. Lappin-Scott J.W. Costerton T.J. Marrie (1992) Biofilms and biofouling E.J. Lederberg (Eds) Encyclopaedia of Microbiology, Vol. 1 Academic Press San Diego 277–284

    Google Scholar 

  15. J.R. Lawrence D.R Korber B.D. Hoyle J.W. Costerton D.E. Caldwell (1991) ArticleTitleOptical sectioning of microbial biofilms J. Bacteriol. 173 6558–6567

    Google Scholar 

  16. M.W. LeChevallier T.M. Babcock R.G. Lee (1987) ArticleTitleExamination and characterization of distribution system biofilms Appl. Environ. Microbiol. 53 2714–2724

    Google Scholar 

  17. Z. Lewandowski S.A. Altobelli P.D. Majors E. Fukushima (1992) ArticleTitleNMR imaging of hydrodynamics near microbially colonized surfaces Water Sci. Technol. 26 577–584

    Google Scholar 

  18. Z. Lewandowski S.A. Altobelli E. Fukushima (1993) ArticleTitleNMR and microelectrode studies of hydrodynamics and kinetics in biofilms Biotechnol. Progr. 9 40–45

    Google Scholar 

  19. Z. Lewandowski P. Stoodley S. Altobelli E. Fukushima (1994) ArticleTitleHydrodynamics and kinetics in biofilm systems: recent advances and new problems Water Sci. Technol. 29 223–229

    Google Scholar 

  20. Z. Lewandowski P. Stoodley S.A. Altobelli (1995) ArticleTitleExperimental and conceptual studies on mass transport in biofilms Water Sci. Technol. 31 153–162

    Google Scholar 

  21. W.N. Mack J.P. Mack A.O. Ackerson (1975) ArticleTitleMicrobial film development in a trickling filter Microb. Ecol. 2 215–226

    Google Scholar 

  22. R. Murga P.S. Stewart D. Daly (1995) ArticleTitleQuantitative analysis of biofilm thickness variability Biotechnol. Bioeng. 45 503–510

    Google Scholar 

  23. K. Potter R.L. Kleinberg F.J. Brockman E.W. McFarland (1996) ArticleTitleAssay for bacteria in porous media by diffusion-weighted NMR J. Magn. Reson. Ser. B 113 9–15

    Google Scholar 

  24. A. Razatos Y.L. Ong M.M. Sharma G. Georgiou (1998) ArticleTitleEvaluating the interaction of bacteria with biomaterials using atomic force microscopy J. Biomater. Sci. (Polymer Ed.) 9 1361–1373

    Google Scholar 

  25. R.W. Robinson D.E. Akin R.A. Nordstedt M.V. Thomas H. C. Aldrich (1984) ArticleTitleLight and electron microscopic examinations of methane-producing biofilms from anaerobic fixed-bed reactors Appl. Environ. Microbiol. 48 127–136

    Google Scholar 

  26. P. Stewart B.M. Peyton W.J. Drury R. Murga (1993) ArticleTitleQuantitative observations of heterogeneities in Pseudomonas aeruginosa biofilms Appl. Environ. Microbiol. 9 327–329

    Google Scholar 

  27. M.S. Switzenbaum R.B. Eimstad (1987) ArticleTitleAnalysis of anaerobic biofilms Environ. Technol. Lett. 8 21–32

    Google Scholar 

  28. M.G. Trulear W.G. Characklis (1982) ArticleTitleDynamics of biofilm processes J. Water Pollut. Cont. Fed. 54 1288–1301

    Google Scholar 

  29. M. Vogt H.C. Flemming W.S. Veeman (2000) ArticleTitleDiffusion in Pseudomonas aeruginosa biofilms: a pulsed field gradient NMR study J. Bacteriol. 77 137–146

    Google Scholar 

  30. W.M. Zahid J.J. Ganczarczyk (1990) ArticleTitleStructure of RBC biofilms Water Environ. Res. 66 100–106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiin-Shuh Jean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jean, JS., Tsao, CW. & Chung, MC. Comparative endoscopic and SEM analyses and imaging for biofilm growth on porous quartz sand. Biogeochemistry 70, 427–445 (2004). https://doi.org/10.1007/s10533-004-0365-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-004-0365-x

Keywords

Navigation