Skip to main content
Log in

Bioremediation of petroleum refinery wastewater by fungal stains isolated from the fishing harbour of Bizerte (Mediterranean Sea)

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The study was conducted in order to explore the potential of fungi isolated from surface and bottom seawater collected from the fishing harbour of Bizerte on the bioremediation of industrial effluent (IE) contaminated by petroleum hydrocarbon. Among the 128 fungal isolates, 11 were isolated from surface seawater and 7 from bottom seawater, representing 18 taxa in total. The gas chromatography mass spectrometry (GC–MS) was used for the determination of hydrocarbon compounds in IE. An initial screening of fungal growth using six concentrations ranged between 20 and 70% (v/v) IE has allowed the identification of the optimal concentration for fungal growth as well as selection of species able to tolerate high amounts of hydrocarbon. Colorimetric test employing 2,6-dichlorophenol indophenol and gravimetric method was applied for the assessment of fungal growth using 20% EI. By checking the phylogenetic affiliation of the high-performing stains as identified using ITSr DNA sequence, a dominance of Ascomycetes was detected. Indeed, Aspergillus terreus and Penicillium expansum may degrade 82.07 and 81.76% of residual total petroleum hydrocarbon (TPH), respectively. Both species were collected from surface seawater. While, Aspergillus niger, Colletotrichum sp and Fusarium annulatum displayed comparable degradation rates 40.43%, 41.3%, and 42.03%, respectively. The lowest rate of degradation 33.62% was detected in Emericellopsis phycophila. All those species were isolated from bottom seawater, excepting A. niger isolated from surface water. This work highlighted the importance of exploring the potential of fungi isolated from the natural environment on the bioremediation of industrial effluent. Our results promoted the investigation of the potential of the high-performing isolates A. terreus and P. expansum on the bioremediation of IE at pilot-scale and then in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Abha S, Singh CS (2012) Hydrocarbon pollution: effects on living organisms, remediation of contaminated environments, and effects of heavy metals co-contamination on bioremediation. Introd Enhanc Oil Recove Proc Bioremed Oil Contam Sites 318:182–184

    Google Scholar 

  • Al-Dossary MA, Abood SA, Al‐Saad HT (2020) Factors affecting polycyclic aromatic hydrocarbon biodegradation by Aspergillus flavus. Remediation 30:17–25

    Article  Google Scholar 

  • Ali MI, Khalil NM, El-Ghany M (2012) Biodegradation of some polycyclic aromatic hydrocarbons by Aspergillus terreus. Afr J Microbiol Res 6:3783–3790

    CAS  Google Scholar 

  • Ali Khan AH, Tanveer S, Anees M, Muhammad YS, Iqbal M, Yousaf S (2016) Role of nutrients and illuminance in predicting the fate of fungal mediated petroleum hydrocarbon degradation and biomass production. J Environ Manage 176:54–60

    Article  CAS  PubMed  Google Scholar 

  • Ali Khan AHT, Kiyani S, Barros A, Iqbal R, Yousaf M (2023) Biosurfactant-producing Aspergillus, Penicillium, and Candida performed higher biodegradation of diesel oil than a non-producing fungal strain. Appl Biochem Microbiol 59:282–289

    Article  Google Scholar 

  • Ameen F, Al-Homaidan AA (2023) Treatment of oily bilge waste water using marine fungi. J King Saud Univ - Sci 35:102929

    Article  Google Scholar 

  • Asemoloye MD, Tosi S, Daccò C, Wang X, Xu S, Marchisio MA, Gao W, Jonathan SG, Pecoraro L (2020) Hydrocarbon degradation and enzyme activities of Aspergillus oryzae and mucor irregularis isolated from nigerian crude oil-polluted sites. Microorganisms 8(12):1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bancon-Montigny C, Gonzalez C, Delpoux S, Avenzac M, Spinelli S, Mhadhbi T, Mejri K, Sakka Hlaili A, Pringault O (2019) Seasonal changes of chemical contamination in coastal waters during sediment resuspension. Chemosphere 235:651–661

    Article  CAS  PubMed  Google Scholar 

  • Barnes NM, Khodse VB, Lotlikar NP, Meena RM, Damare SR (2017) Bioremediation potential of hydrocarbon-utilizing fungi from select marine niches of India. 3 Biotech 8:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes NM, Damare SR, Bhatawadekar VC, Garg A, Pradip Lotlikar N (2023) Degradation of crude oil-associated polycyclic aromatic hydrocarbons by marine-derived fungi. 3 Biotech 13:335

    Article  PubMed  Google Scholar 

  • Baumann AJ, Sadañoski MA, Marino DJG, Alvarenga AE, Silva CG, Argüello BV, Zapata PD (2024) Carbendazim mycoremediation: a combined approach to restoring soil. Mycol Prog 23:7

    Article  Google Scholar 

  • Ben Said O, Cravo-Laureau C, Armougom F, Cipullo S, Ben Khelil M, Ben Haj Yahiya M, Douihech A, Beyrem H, Coulon F, Duran R (2021) Enhanced pilot bioremediation of oily sludge from petroleum refinery disposal under hot-summer Mediterranean climate. Environ Technol Innov 24:102037

    Article  Google Scholar 

  • Bhatt A, Prajapati D, Gupte A, Gupte S (2023) Microplastic pollution: sources, environmental hazards, and mycoremediation as a sustainable solution. In: Satyanarayana T, Deshmukh SK (eds) Fungi and fungal products in human welfare and biotechnology. Springer, Singapore

    Google Scholar 

  • Blackwell M (2011) The Fungi: 1, 2, 3… million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66:1007–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bovio E, Gnavi G, Prigione V, Spina F, Denaro R, Yakimov M, Calogero R, Crisafi F, Varese GC (2017) The culturable mycobiota of a mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Sci Total Environ 576:310–318

    Article  CAS  PubMed  Google Scholar 

  • Cáceres-Zambrano JZ, Rodríguez-Córdova LA, Sáez-Navarrete CA, Rives YC (2024) Biodegradation capabilities of filamentous fungi in high-concentration heavy crude oil environments. Arch Microbiol 206:123

    Article  PubMed  Google Scholar 

  • Daflon SDA, Guerra IL, Reynier MV, Cerqueira AC, Botta CR, Campos JC (2017) Toxicity identification and evaluation (TIE) of a petroleum refinery wastewater. J Environ Sci Health Part A 52:842–848

    CAS  Google Scholar 

  • de Melo Carlos L, Camacho KF, Duarte AW, de Oliveira VM, Boroski M, Rosa LH, Vieira R, Neto AA, Ottoni JR, Passarini MRZ (2024) Bioprospecting the potential of the microbial community associated to antarctic marine sediments for hydrocarbon bioremediation. Brazilian J Microbiol 55:471–485

    Article  Google Scholar 

  • Dell’Anno F, Rastelli E, Buschi E, Barone G, Beolchini F, Dell’Anno A (2022) Fungi can be more effective than bacteria for the bioremediation of marine sediments highly contaminated with heavy metals. Microorganisms 10:993

    Article  PubMed  PubMed Central  Google Scholar 

  • Elshafie A, AlKindi AY, Al-Busaidi S, Bakheit C, Albahry SN (2007) Biodegradation of crude oil and n-alkanes by fungi isolated from Oman. Mar Pollut Bull 54:1692–1696

    Article  CAS  PubMed  Google Scholar 

  • Essabri AMA, Aydinlik NP, Williams NE (2019) Bioaugmentation and biostimulation of total petroleum hydrocarbon degradation in a petroleum-contaminated soil with fungi isolated from olive oil effluent. Water Air Soil Pollut 230:76

    Article  Google Scholar 

  • Fallahi M, Sarempour M, Mirzadi Gohari A (2023) Potential biodegradation of polycyclic aromatic hydrocarbons (PAHs) and petroleum hydrocarbons by indigenous fungi recovered from crude oil-contaminated soil in Iran. Sci Rep 13:22153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gargouri B, Karray F, Mhiri N, Aloui F, Sayadi S (2011) Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents. J Hazard Mater 189:427–434

    Article  CAS  PubMed  Google Scholar 

  • Gargouri B, Mhiri N, Karray F, Aloui F, Sayadi S (2015) Isolation and characterization of hydrocarbon-degrading yeast strains from Petroleum contaminated industrial wastewater. BioMed Res Int. https://doi.org/10.1155/2015/929424

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomaa OM, Jassim AY, Chanda A (2022) Bioremoval of PVP–coated silver nanoparticles using Aspergillus niger: the role of exopolysaccharides. Environ Sci Pollut Res 29:31501–31510

    Article  CAS  Google Scholar 

  • González-Soto N, Campos L, Navarro E, Bilbao E, Guilhermino L, Cajaraville MP (2022) Effects of microplastics alone or with sorbed oil compounds from the water accommodated fraction of a North sea crude oil on marine mussels (Mytilus galloprovincialis). Sci Total Environ 851:157999

    Article  PubMed  Google Scholar 

  • Haque S, Srivastava N, Pal DB, Alkhanani MF, Almalki AH, Areeshi MY, Naidu R, Gupta VK (2022) Functional microbiome strategies for the bioremediation of petroleum-hydrocarbon and heavy metal contaminated soils: a review. Sci Total Environ 833:155222

    Article  CAS  PubMed  Google Scholar 

  • Horvat M, Kotnik J, Logar M, Fajon V, Zvonarić T, Pirrone N (2003) Speciation of mercury in surface and deep-sea waters in the mediterranean sea. Atmos Environ 37:93–108

    Article  Google Scholar 

  • Jaouani A, Sayadi S, Vanthournhout M, Penninckx MJ (2003) Potent fungi for decolourisation of olive oil mill wastewaters. Enzym Microb Technol 33:802–809

    Article  CAS  Google Scholar 

  • Karray F, Aloui F, Jemli M, Mhiri N, Loukil S, Bouhdida R, Mouha N, Sayadi S (2020) Pilot-scale petroleum refinery wastewaters treatment systems: performance and microbial communities’ analysis. Process Saf Environ Prot 141:73–82

    Article  CAS  Google Scholar 

  • Ke C-Y, Qin F-L, Yang Z-G, Sha J, Sun W-J, Hui J-F, Zhang Q-Z, Zhang X-L (2021) Bioremediation of oily sludge by solid complex bacterial agent with a combined two-step process. Ecotoxicol Environ Saf 208:111673

    Article  CAS  PubMed  Google Scholar 

  • Khaled I, Ferjani H, Sirotkin AV, Alwasel S, Harrath AH (2017) Impact of oil related environmental pollutants on the ovary structure in the freshwater leech Erpobdella johanssoni (Johansson, 1927) (Clitellata: Hirudinea). Eur Zool J 84:286–293

    Article  CAS  Google Scholar 

  • Kumar SB, Padhi RK, Mohanty AK, Satpathy KK (2020) Distribution and ecological- and health-risk assessment of heavy metals in the seawater of the southeast coast of India. Mar Pollut Bull 161:111712

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Kumar H, Vishal V, Lal S (2023) Studies on the morphology, phylogeny, and bioremediation potential of Penicillium citrinum and Paecilomyces variotii (Eurotiales) from oil-contaminated areas. Arch Microbiol 205:50

    Article  CAS  PubMed  Google Scholar 

  • Kuzikova I, Safronova V, Zaytseva T, Medvedeva N (2017) Fate and effects of nonylphenol in the filamentous fungus Penicillium expansum isolated from the bottom sediments of the Gulf of Finland. J Mar Syst 171:111–119

    Article  Google Scholar 

  • Lazzem A, Lekired A, Ouzari H-I, Landoulsi A, Chatti A, El May A (2023) Isolation and characterization of a newly chrysene-degrading achromobacter aegrifaciens. Int Microbiol. https://doi.org/10.1007/s10123-023-00435-0

    Article  PubMed  Google Scholar 

  • Li X, Li P, Lin X, Zhang C, Li Q, Gong Z (2008) Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. J Hazard Mater 150:21–26

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Coloe S, Baird R, Pedersen J (2000) Rapid mini-preparation of fungal DNA for PCR. J Clin Microbiol 38:471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loss E, Lee M, Wu M, Martien J, Chen W, Amador-Noguez D et al (2019) Cytochrome P450 monooxygenase-mediated metabolic utilization of benzo [a] pyrene by Aspergillus species. MBio 10(3):10–1128

    Google Scholar 

  • Maamar A, Lucchesi M-E, Debaets S, Nguyen van Long N, Quemener M, Coton E, Bouderbala M, Burgaud G, Matallah-Boutiba A (2020) Highlighting the crude oil bioremediation potential of marine fungi isolated from the port of Oran (Algeria). Diversity 12:196

    Article  CAS  Google Scholar 

  • Mahjoubi M, Cappello S, Souissi Y, Jaouani A, Cherif A (2018) Microbial bioremediation of petroleum contaminated marine environments contaminated marine environments. Recent Insights Pet Sci Eng 325:325–350

    Google Scholar 

  • Marchand C, St-Arnaud M, Hogland W, Bell TH, Hijri M (2017) Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. Int Biodeterior Biodegrad 116:48e57

    Article  Google Scholar 

  • Marín F, Navarrete H, Narvaez-Trujillo A (2018) Total petroleum hydrocarbon degradation by endophytic fungi from the ecuadorian amazon. Adv Microbiol 8:1029–1053

    Article  Google Scholar 

  • Medaura MC, Guivernau M, Moreno-Ventas X, Prenafeta-Boldú FX, Viñas M (2021) Bioaugmentation of native fungi, an efficient strategy for the bioremediation of an aged industrially polluted soil with heavy hydrocarbons. Front Microbiol 12:626436

    Article  PubMed  PubMed Central  Google Scholar 

  • Munezero J, Kassaza K, Bazira J, Kiwanuka GN (2024) Bioremedial potential of bacteria isolated from soil in automobile garages and fuel stations in Mbarara City, Southwestern Uganda. Bioremediat J. https://doi.org/10.1080/10889868.2024.2325444

    Article  Google Scholar 

  • Nakbi A, Banaoues RC, Ben Dhiab R, Ghozzi K, Belgacem S, Challouf R, Haouas N, Babba H (2023) Marine fungal community composition and diversity across a polluted site in the south mediterranean coast: the Monastir Bay, Tunisia. Water Sci Technol 89:319–332

    Article  Google Scholar 

  • Nikolaivits E, Siaperas R, Agrafiotis A, Ouazzani J, Magoulas A, Gioti Α, Topakas E (2021) Functional and transcriptomic investigation of laccase activity in the presence of PCB29 identifies two novel enzymes and the multicopper oxidase repertoire of a marine-derived fungus. Sci Total Environ 775:145818

    Article  CAS  PubMed  Google Scholar 

  • Olicón-Hernández DR, González-López J, Aranda E (2017) Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Front Microbiol 8:1792

    Article  PubMed  PubMed Central  Google Scholar 

  • Othman AR, Ismail NS, Abdullah SRS, Hasan HA, Kurniawan SB, Sharuddin SSN, Ismail NI (2022) Potential of indigenous biosurfactant-producing fungi from real crude oil sludge in total petroleum hydrocarbon degradation and its future research prospects  J Environ Chem Eng 10:107621

    Article  CAS  Google Scholar 

  • Ozyurek SB, Avcioglu NH, Bilkay I (2021) Mycoremediation potential of Aspergillus ochraceus NRRL 3174. Archives Microbiol 203:5937–5950

    Article  Google Scholar 

  • Peidro-Guzmán H et al (2021) Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus aspergillus sydowii at hypersaline conditions. Environ Microbiol 23:3435–3459

    Article  PubMed  Google Scholar 

  • Ra T, Zhao Y, Zheng M (2019) Comparative study on the petroleum crude oil degradation potential of microbes from petroleum-contaminated soil and non-contaminated soil. Int J Environ Sci Technol 16:7127–7136

    Article  CAS  Google Scholar 

  • Rani B, Kumar V, Singh J, Bisht S, Teotia P, Sharma S, Kela R (2014) Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Brazilian J Microbiol 45:1055–1063

    Article  Google Scholar 

  • Saravanan A, Karishma S, Kumar PS, Rangasamy G (2023) Biodegradation of oil-contaminated aqueous ecosystem using an immobilized fungi biomass and kinetic study. Environ Res 220:115252

    Article  CAS  PubMed  Google Scholar 

  • Tarchi M, Zaaboub N, Alsubih M, Brik B, Martins MVA, Aleya L, Trabelsi L (2023) Microalgae colonization and trace element accumulation on the plastisphere of marine plastic debris in Monastir Bay (Eastern Tunisia). Environ Sci Pollut Res 30:32427–32451

    Article  CAS  Google Scholar 

  • Tripathi V, Gaur VK, Thakur RS, Patel DK, Manickam N (2023) Assessing the half-life and degradation kinetics of aliphatic and aromatic hydrocarbons by bacteria isolated from crude oil contaminated soil. Chemosphere 337:139264

    Article  CAS  PubMed  Google Scholar 

  • Vaksmaa A, Guerrero-Cruz S, Ghosh P, Zeghal E, Hernando-Morales V, Niemann H (2023) Role of fungi in bioremediation of emerging pollutants. Front Mar Sci 10:1070905

    Article  Google Scholar 

  • Vidal-Verdú À, Gómez-Martínez D, Latorre-Pérez A, Peretó J, Porcar M (2022) The car tank lid bacteriome: a reservoir of bacteria with potential in bioremediation of fuel. NPJ Biofilms Microbiomes 8:32–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Vithalani P, Bhatt NS (2023) Mycoremediation of rhodamine B through Aspergillus fumigatus P5 and evaluation of degradative pathway. Int J Environ Sci Technol 20:13209–13218

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols 18:315–322

    Google Scholar 

  • Wrenn BA, Venosa AD (1996) Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by amost-probable-number procedure. Can J Microbiol 42:252–258

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Ma J, Sun Y, Zhou T, Zhao H, Yu F (2020) Microbial degradation and other environmental aspects of microplastics/plastics. Sci Total Environ 715:136968

    Article  CAS  PubMed  Google Scholar 

  • Zrafi-Nouira I, Safi NMD, Bahri R, Mzoughi N, Aissi A, Abdennebi HB, Saidane-Mosbahi D (2010) Distribution and sources of polycyclic aromatic hydrocarbons around a petroleum refinery rejection area in Jarzouna-Bizerte (Coastal Tunisia). Soil Sediment Contam: Int J   19:292–306

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is carried out under the MOBIDOC scheme, funded by The Ministry of Higher Education and Scientific Research through the PromESsE project and managed by the ANPR.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, TA; methodology, TA, RB; validation, RB; formal analysis, TA, RB; writing—original draft manuscript, TA and HIO; writing—review and editing, HIO and NTM.

Corresponding author

Correspondence to Tahani El Ayari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Ayari, T., Bouhdida, R., Ouzari, H.I. et al. Bioremediation of petroleum refinery wastewater by fungal stains isolated from the fishing harbour of Bizerte (Mediterranean Sea). Biodegradation (2024). https://doi.org/10.1007/s10532-024-10083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10532-024-10083-4

Keywords

Navigation