Abstract
Landfills are widely employed as the primary means of solid waste disposal. However, this practice generates landfill gas (LFG) which contains methane (CH4), a potent greenhouse gas, as well as various volatile organic compounds and volatile inorganic compounds. These emissions from landfills contribute to approximately 25% of the total atmospheric CH4, indicating the imperative need to valorize or treat LFG prior to its release into the atmosphere. This review first aims to outline landfills, waste disposal and valorization, conventional gas treatment techniques commonly employed for LFG treatment, such as flares and thermal oxidation. Furthermore, it explores biotechnological approaches as more technically and economically feasible alternatives for mitigating LFG emissions, especially in the case of small and aged landfills where CH4 concentrations are often below 3% v/v. Finally, this review highlights biofilters as the most suitable biotechnological solution for LFG treatment and discusses several advantages and challenges associated with their implementation in the landfill environment.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Not applicable.
References
Aicha C, Bey BH, Mebrouk K (2013) Characterization of indigenous and adapted hydrocarbon degrading bacteria isolated from landfill leachate from Ain Temouchent engineered landfill, Algeria. J Environ Science Eng 2:537–548
Albanna M, Warith M, Fernandes L (2010) Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers. Waste Manag 30:219–227. https://doi.org/10.1016/j.wasman.2009.09.038
Alinezhad E, Haghighi M, Rahmani F, Keshizadeh H, Abdi M, Naddafi K (2019) Technical and economic investigation of chemical scrubber and bio-filtration in removal of H2S and NH3 from wastewater treatment plant. J Environ Manag 241:32–43. https://doi.org/10.1016/j.jenvman.2019.04.003
Alvarez RA, Zavala-Araiza D, Lyon DR, Allen DT, Barkley ZR, Brandt AR, Davis KJ, Herndon SC, Jacob DJ, Karion A, Kort EA (2018) Assessment of methane emissions from the U.S. oil and gas supply chain. Science 361:186–188. https://doi.org/10.1126/science.aar7204
Amaraibi RJ, Joseph B, Kuhn JN (2022) Techno-economic and sustainability analysis of siloxane removal from landfill gas used for electricity generation. J Environ Manag 314:115070. https://doi.org/10.1016/j.jenvman.2022.115070
Andriani D, Atmaja TD (2019) The potentials of landfill gas production: a review on municipal solid waste management in Indonesia. J Mater Cycles Waste Manag 21:1572–1586. https://doi.org/10.1007/s10163-019-00895-5
Araiza-Aguilar JA, Rojas-Valencia MN (2019) Spatial modelling of gaseous emissions from two municipal solid waste dump sites. Int J Environ Stud 76:213–224. https://doi.org/10.1080/00207233.2018.1535870
Barbusinski K, Kalemba K, Kasperczyk D, Urbaniec K, Kozik V (2017) Biological methods for odor treatment—a review. J Clean Prod 152:223–241. https://doi.org/10.1016/j.jclepro.2017.03.093
Berger J, Fornés LV, Ott C, Jager J, Wawra B, Zanke U (2005) Methane oxidation in a landfill cover with capillary barrier. Waste Manag 25:369–373. https://doi.org/10.1016/j.wasman.2005.02.005
Cabrol L, Malhautier L (2011) Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol 90:837–849. https://doi.org/10.1007/s00253-011-3191-9
Cáceres M, Dorado AD, Gentina JC, Aroca G (2017) Oxidation of methane in biotrickling filters inoculated with methanotrophic bacteria. Environ Sci Pollut Res 24:25702–25712. https://doi.org/10.1007/s11356-016-7133-z
Caulton DR, Shepson PB, Cambaliza MO, McCabe D, Baum E, Stirm BH (2014) Methane destruction efficiency of natural gas flares associated with shale formation wells. Environ Sci Technol 48:9548–9554. https://doi.org/10.1021/es500511w
Chen M, Yao XZ, Ma RC, Song QC, Long Y, He R (2017) Methanethiol generation potential from anaerobic degradation of municipal solid waste in landfills. Environ Sci Pollut Res 24:23992–24001. https://doi.org/10.1007/s11356-017-0035-x
Cheng Y, He H, Yang C, Zeng G, Li X, Chen H, Yu G (2016) Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnol Adv 34:1091–1102. https://doi.org/10.1016/j.biotechadv.2016.06.007
Choi H, Ryu HW, Cho K-S (2018) Biocomplex textile as an alternative daily cover for the simultaneous mitigation of methane and malodorous compounds. Waste Manag 72:339–348. https://doi.org/10.1016/j.wasman.2017.11.017
Coskuner G, Jassim MS, Nazeer N, Damindra GH (2020) Quantification of landfill gas generation and renewable energy potential in arid countries: case study of Bahrain. Waste Manag Res 38:1110–1118. https://doi.org/10.1177/0734242X20933338
Cossu R, Stegmann R (2018) Solid waste landfilling: concepts, processes, technology. Elsevier, Amsterdam, pp 649–676
Danila V, Zagorskis A, Januševičius T (2022) Effects of water content and irrigation of packing materials on the performance of biofilters and biotrickling filters: a review. Processes 10:1304. https://doi.org/10.3390/pr10071304
Davoli E, Fattore E, Paiano V, Colombo A, Palmiotto M, Rossi AN, Grande MI, Fanelli R (2010) Waste management health risk assessment: a case study of a solid waste landfill in South Italy. Waste Manag 30:1608–1613. https://doi.org/10.1016/j.wasman.2009.10.013
Delhoménie M-C, Heitz M (2005) Biofiltration of air: a review. Crit Rev Biotechnol 25:53–72. https://doi.org/10.1080/07388550590935814
Dever SA, Swarbrick GE, Stuetz RM (2011) Passive drainage and biofiltration of landfill gas: results of Australian field trial. Waste Manag 31:1029–1048. https://doi.org/10.1016/j.wasman.2010.10.026
Dhamodharan K, Varma VS, Veluchamy C, Pugazhendhi A, Rajendran K (2019) Emission of volatile organic compounds from composting: a review on assessment, treatment and perspectives. Sci Total Environ 695:133725. https://doi.org/10.1016/j.scitotenv.2019.133725
Dobslaw D, Engesser KH, Störk H, Gerl T (2019) Low-cost process for emission abatement of biogas internal combustion engines. J Clean Prod 227:1079–1092. https://doi.org/10.1016/j.jclepro.2019.04.258
Duan Z, Lu W, Li D, Wang H (2014) Temporal variation of trace compound emission on the working surface of a landfill in Beijing. China Atmos Environ 88:230–238. https://doi.org/10.1016/j.atmosenv.2014.01.051
Duan Z, Kjeldsen P, Scheutz C (2021a) Trace gas composition in landfill gas at Danish landfills receiving low-organic waste. Waste Manag 122:113–123. https://doi.org/10.1016/j.wasman.2021.01.001
Duan Z, Scheutz C, Kjeldsen P (2021b) Trace gas emissions from municipal solid waste landfills: a review. Waste Manag 119:39–62. https://doi.org/10.1016/j.wasman.2020.09.015
Duan Z, Scheutz C, Kjeldsen P (2022) Mitigation of methane emissions from three Danish landfills using different biocover systems. Waste Manag 149:156–167. https://doi.org/10.1016/j.wasman.2022.05.022
EEA (2023) European Environment Agency, Atmospheric greenhouse gas concentrations. https://www.eea.europa.eu/en/analysis/indicators/atmospheric-greenhouse-gas-concentrations. Accessed 25 Dec 2023
Enviroaccess (2023) Enviro-access consulting. https://www.enviroaccess.ca/expert-conseil/en/directory-of-companies-offering-environmental-solutions/biofiltration-of-gaseous-effluents-airscience-technologies/. Accessed 25 Dec 2023
EMIS (2020a) Energie en milieu informatiesysteem (deutch). The Flemish Knowledge Centre. https://emis.vito.be/en/bat/tools-overview/sheets/biotrickling-filter. Accessed 25 dec 2023
EMIS (2020b) Energie en milieu informatiesysteem (deutch). The Flemish Knowledge Centre. https://emis.vito.be/en/bat/tools-overview/sheets/bioscrubberemis.vito.be/en/bat/tools-overview/sheets/bioscrubber. Accessed 25 dec 2023
EPA (2018) The U.S. Environmental Protection Agency. https://www3.epa.gov/ttncatc1/dir1/fcataly.pdf#:~:text=Operation%20and%20Maintenance%20%28O%20%26%20M%29%20Costs%2C%20Annualized,per%20sm3%2Fsec%20%28%244%20to%20%2425%20per%20scfm%29%2C%20annually. Accessed 25 Dec 2023
EPA (2011a) The U.S. Environmental Protection Agency. https://www.chrome-extension.com//gphandlahdpffmccakmbngmbjnjiiahp/.https://19january2017snapshot.epa.gov/sites/production/files/2016-06/documents/installflares.pdf. Accessed 22 Jan 2024
EPA (2011b) The U.S. Environmental Protection Agency. https://www.epa.gov/sites/default/files/2015-12/documents/landfills.pdf. Accessed 22 Jan 2024
Farrokhzadeh H, Hettiaratchi JP, Jayasinghe P, Kumar S (2017) Aerated biofilters with multiple-level air injection configurations to enhance biological treatment of methane emissions. Bioresour Technol 239:219–225. https://doi.org/10.1016/j.biortech.2017.05.009
Ferdowsi M, Veillette M, Avalos Ramirez A, Jones JP, Heitz M (2016) Performance evaluation of a methane biofilter under steady state, transient state and starvation conditions. Water Air Soil Pollut 227:1–11. https://doi.org/10.1007/s11270-016-2838-7
Ferdowsi M, Avalos Ramirez A, Jones JP, Heitz M (2017a) Elimination of mass transfer and kinetic limited organic pollutants in biofilters: a review. Int Biodeterior Biodegrad 119:336–348. https://doi.org/10.1016/j.ibiod.2016.10.015
Ferdowsi M, Avalos Ramirez A, Jones JP, Heitz M (2017b) Methane biofiltration in the presence of ethanol vapor under steady and transient state conditions: an experimental study. Environ Sci Pollut Res 24:20883–20896. https://doi.org/10.1007/s11356-017-9634-9
Ferdowsi M, Desrochers M, Jones JP, Heitz M (2019) Moving from alcohol to methane biofilters: an experimental study on biofilter performance and carbon distribution. J Chem Technol Biotechnol 94:3315–3324. https://doi.org/10.1002/jctb.6142
Fiore M, Magi V, Viggiano A (2020) Internal combustion engines powered by syngas: a review. Appl Energy 276:115415. https://doi.org/10.1016/j.apenergy.2020.115415
Fjelsted L, Scheutz C, Christensen AG, Larsen JE, Kjeldsen P (2020) Biofiltration of diluted landfill gas in an active loaded open-bed compost filter. Waste Manag 103:1–11. https://doi.org/10.1016/j.wasman.2019.12.005
Frasi N, Rossi E, Pecorini I, Iannelli R (2020) Methane oxidation efficiency in biofiltration systems with different moisture content treating diluted landfill gas. Energies 13:2872. https://doi.org/10.3390/en13112872
Fulazzaky MA, Talaiekhozani A, Ponraj M, Abd Majid MZ, Hadibarata T, Goli A (2014) Biofiltration process as an ideal approach to remove pollutants from polluted air. Desalin Water Treat 52:3600–3615. https://doi.org/10.1080/19443994.2013.854102
Galli F, Lai JJ, De Tommaso J, Pauletto G, Patience GS (2021) Gas to liquids techno-economics of associated natural gas, biogas, and landfill gas. Processes 9:1568. https://doi.org/10.3390/pr9091568
Ganendra G, Mercado-Garcia D, Hernandez-Sanabria E, Boeckx P, Ho A, Boon N (2015) Methane biofiltration using autoclaved aerated concrete as the carrier material. Appl Microbiol Biotechnol 99:7307–7320. https://doi.org/10.1007/s00253-015-6646-6
Gao P-F, Gou X-L (2019) Experimental research on the thermal oxidation of ventilation air methane in a thermal reverse flow reactor. ACS Omega 4:14886–14894. https://doi.org/10.1021/acsomega.9b01573
Gebert J, Groengroeft A (2006) Passive landfill gas emission—influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters. Waste Manag 26:245–251. https://doi.org/10.1016/j.wasman.2005.01.022
Gebert J, Stralis-Pavese N, Alawi M, Bodrossy L (2008) Analysis of methanotrophic communities in landfill biofilters using diagnostic microarray. Environ Microbiol 10:1175–1188. https://doi.org/10.1111/j.1462-2920.2007.01534.x
Gélin P, Primet M (2002) Complete oxidation of methane at low temperature over noble metal-based catalysts: a review. Appl Catal B 39:1–37. https://doi.org/10.1016/S0926-3373(02)00076-0
Gong H, Zhou S, Chen Z, Chen L (2019) Effect of volatile organic compounds on carbon dioxide adsorption performance via pressure swing adsorption for landfill gas upgrading. Renew Energy 135:811–818. https://doi.org/10.1016/j.renene.2018.12.068
González CR, Björklund E, Forteza R, Cerda V (2013) Volatile organic compounds in landfill odorant emissions on the island of Mallorca. Int J Environ Anal Chem 93:434–449. https://doi.org/10.1080/03067319.2011.637196
Government of Canada (2023a) https://www.canada.ca/en/services/environment/weather/climatechange/climate-plan/reducing-methane-emissions/faster-further-strategy.html. Accessed 05 Dec 2023
Government of Canada (2023b) https://www.canada.ca/en/environment-climate-change/services/managing-reducing-waste/municipal-solid/waste-greenhouse-gases-canada-actions.html. Accessed 05 Dec 2023
Gospodarek M, Rybarczyk P, Brillowska-Dąbrowska A, Gębicki J (2019a) The use of various species of fungi in biofiltration of air contaminated with odorous volatile organic compounds. E3S Web Conf 100:00021. https://doi.org/10.1051/e3sconf/201910000021
Gospodarek M, Rybarczyk P, Szulczyński B, Gębicki J (2019b) Comparative evaluation of selected biological methods for the removal of hydrophilic and hydrophobic odorous VOCs from air. Processes 7:187. https://doi.org/10.3390/pr7040187
Guo Y, Wen M, Li G, An T (2021) Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Appl Catal B 281:119447. https://doi.org/10.1016/j.apcatb.2020.119447
Han JS, Mahanty B, Yoon SU, Kim CG (2016) Activity of a methanotrophic consortium isolated from landfill cover soil: response to temperature, pH, CO2, and porous adsorbent. Geomicrobiol 33:878–885. https://doi.org/10.1080/01490451.2015.1123330
Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471. https://doi.org/10.1128/mr.60.2.439-471.1996
Harčárová K, Vilčeková S, Balintova M (2020) Building materials as potential emission sources of VOC in the indoor environment of buildings. Key Eng Mater 838:74–80. https://doi.org/10.4028/www.scientific.net/KEM.838.74
Hashemi H, Christensen JM, Gersen S, Levinsky H, Klippenstein SJ, Glarborg P (2016) High-pressure oxidation of methane. Combust Flame 172:349–364. https://doi.org/10.1016/j.combustflame.2016.07.016
Hernández J, Gómez-Cuervo S, Omil F (2015) EPS and SMP as stability indicators during the biofiltration of diffuse methane emissions. Water Air Soil Pollut 226:343. https://doi.org/10.1007/s11270-015-2576-2
Houghton KM, Carere CR, Stott MB, McDonald IR (2019) Thermophilic methanotrophs: in hot pursuit. FEMS Microbiol Ecol 95:125. https://doi.org/10.1093/femsec/fiz125
Huete A, de Los C-V, Gómez-Borraz T, Morgan-Sagastume JM, Noyola A (2018) Control of dissolved CH4 in a municipal UASB reactor effluent by means of a desorption—Biofiltration arrangement. J Environ Manag 216:383–391. https://doi.org/10.1016/j.jenvman.2017.06.061
IEA (2021) International Energy Agency. https://www.iea.org/reports/methane-tracker-2020. Accessed 05 Dec 2023
Iranpour R, Cox HH, Deshusses MA, Schroeder ED (2005) Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ Prog 24:254–267. https://doi.org/10.1002/ep.10077
Jafarinejad S (2017) Control and treatment of air emissions. Petroleum Waste Treatment and Pollution Control. Butterworth-Heinemann 149–183
Jain P, Wally J, Townsend TG, Krause M, Tolaymat T (2021) Greenhouse gas reporting data improves understanding of regional climate impact on landfill methane production and collection. PLoS ONE 16:e0246334. https://doi.org/10.1371/journal.pone.0246334
Jung S, Lee J, Moon DH, Kim KH, Kwon EE (2021) Upgrading biogas into syngas through dry reforming. Renew Sustain Energy Rev 143:110949. https://doi.org/10.1016/j.rser.2021.110949
Jürgensen L, Ehimen EA, Born J, Holm-Nielsen JB (2018) A combination anaerobic digestion scheme for biogas production from dairy effluent—CSTR and ABR, and biogas upgrading. Biomass Bioenergy 111:241–247. https://doi.org/10.1016/j.biombioe.2017.04.007
Kamal MS, Razzak SA, Hossain MM (2016) Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos Environ 140:117–134. https://doi.org/10.1016/j.atmosenv.2016.05.031
Khabiri B, Ferdowsi M, Buelna G, Jones JP, Heitz M (2020a) Simultaneous biodegradation of methane and styrene in biofilters packed with inorganic supports: experimental and macrokinetic study. Chemosphere 252:126492. https://doi.org/10.1016/j.chemosphere.2020.126492
Khabiri B, Ferdowsi M, Buelna G, Jones JP, Heitz M (2020b) Methane biofiltration under different strategies of nutrient solution addition. Atmos Pollut Res 11:85–93. https://doi.org/10.1016/j.apr.2019.09.018
Khabiri B, Ferdowsi M, Buelna G, Jones JP, Heitz M (2022) Bioelimination of low methane concentrations emitted from wastewater treatment plants: a review. Crit Rev Biotechnol 42:450–467. https://doi.org/10.1080/07388551.2021.1940830
Khadem AF, Pol A, Wieczorek AS, Jetten MSM, Op Den Camp H (2012) Metabolic regulation of “Ca. Methylacidiphilum Fumariolicum” SolV cells grown under different nitrogen and oxygen limitations. Front. Microbiol. 3: https://doi.org/10.3389/fmicb.2012.00266
Khider MLK, Brautaset T, Irla M (2021) Methane monooxygenases: central enzymes in methanotrophy with promising biotechnological applications. World J Microbiol Biotechnol 37:72. https://doi.org/10.1007/s11274-021-03038-x
Kim TG, Lee EH, Cho KS (2013) Effects of nonmethane volatile organic compounds on microbial community of methanotrophic biofilter. Appl Microbiol Biotechnol 97:6549–6559. https://doi.org/10.1007/s00253-012-4443-z
Kim TG, Jeong SY, Cho KS (2014) Functional rigidity of a methane biofilter during the temporal microbial succession. Appl Microbiol Biotechnol 98:3275–3286. https://doi.org/10.1007/s00253-013-5371-2
Krause MJ, Chickering WG, Townsend TG, Reinhart DR (2016) Critical review of the methane generation potential of municipal solid waste. Crit Rev Environ Sci Technol 46:1117–1182. https://doi.org/10.1080/10643389.2016.1204812
Kvist T, Aryal N (2019) Methane loss from commercially operating biogas upgrading plants. Waste Manag 87:295–300. https://doi.org/10.1016/j.wasman.2019.02.023
Kumar M, Giri BS, Kim KH, Singh RP, Rene ER, Singh López ME, RS. (2019) Performance of a biofilter with compost and activated carbon based packing material for gas-phase toluene removal under extremely high loading rates. Bioresource technology 285:121317. https://doi.org/10.1016/j.biortech.2019.121317
La H, Hettiaratchi JP, Achari G, Kim JJ, Dunfield PF (2018a) Investigation of biologically stable biofilter medium for methane mitigation by methanotrophic bacteria. J Hazard Toxic Radioact Waste 22:04018013. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000406
La H, Hettiaratchi JP, Achari G, Dunfield PF (2018b) Biofiltration of methane. Bioresour Technol 268:759–772. https://doi.org/10.1016/j.biortech.2018.07.043
Latosov E, Loorits M, Maaten B, Volkova A, Soosaar S (2017) Corrosive effects of H2S and NH3 on natural gas piping systems manufactured of carbon steel. Energy Procedia 128:316–323. https://doi.org/10.1016/j.egypro.2017.08.319
Lebrero R, López JC, Lehtinen I, Pérez R, Quijano G, Muñoz R (2016) Exploring the potential of fungi for methane abatement: performance evaluation of a fungal-bacterial biofilter. Chemosphere 144:97–106. https://doi.org/10.1016/j.chemosphere.2015.08.017
Lee E-H, Park H, Cho K-S (2010) Characterization of methane, benzene and toluene-oxidizing consortia enriched from landfill and riparian wetland soils. J Hazard Mater 184:313–320. https://doi.org/10.1016/j.jhazmat.2010.08.038
Lee EH, Yi TW, Moon KE, Park HJ, Ryu HW, Cho KS (2011) Characterization of methane oxidation by a methanotroph isolated from a landfill cover soil, South Korea. J Microbiol Biotechnol 21:753–756. https://doi.org/10.4014/jmb.1102.01055
Liao D, Li E, Li J, Zeng P, Feng R, Xu M, Sun G (2018) Removal of benzene, toluene, xylene and styrene by biotrickling filters and identification of their interactions. PLoS ONE 13:e0189927. https://doi.org/10.1371/journal.pone.0189927
Limbri H, Gunawan C, Thomas T, Smith A, Scott J, Rosche B (2014) Coal-packed methane biofilter for mitigation of greenhouse gas emissions from coal mine ventilation air. PLoS ONE 9:e94641. https://doi.org/10.1371/journal.pone.0094641
Liu F, Fiencke C, Guo J, Rieth R, Cuhls C, Dong R, Pfeiffer EM (2017) Bioscrubber treatment of exhaust air from intensive pig production: case study in northern Germany at mild climate condition. Eng Life Sci 17:458–466. https://doi.org/10.1002/elsc.201600169
Liu F, Fiencke C, Guo J, Lyu T, Dong R, Pfeiffer EM (2019) Optimisation of bioscrubber systems to simultaneously remove methane and purify wastewater from intensive pig farms. Environ Sci Pollut Res 26:15847–15856. https://doi.org/10.1007/s11356-019-04924-6
Lombardi L, Carnevale EA, Pecorini I (2016) Experimental evaluation of two different types of reactors for CO2 removal from gaseous stream by bottom ash accelerated carbonation. Waste Manag 58:287–298. https://doi.org/10.1016/j.wasman.2016.09.038
López JC, Merchan L, Lebrero R, Munoz R (2018) Feast-famine biofilter operation for methane mitigation. J Clean Prod 170:108–118. https://doi.org/10.1016/j.jclepro.2017.09.157
Ma K, Conrad R, Lu Y (2013) Dry/wet cycles change the activity and population dynamics of methanotrophs in rice field soil. Appl Environ Microbiol 79:4932–4939. https://doi.org/10.1128/AEM.00850-13
Mackay D, Shiu WY, Lee SC (2006) Handbook of physical-chemical properties and environmental fate for organic chemicals, 2nd edn. CRC Press, Boca Raton
Malakar S, Saha PD, Baskaran D, Rajamanickam R (2017) Comparative study of biofiltration process for treatment of VOCs emission from petroleum refinery wastewater—a review. Environ Technol Innov 8:441–461. https://doi.org/10.1016/j.eti.2017.09.007
Malhautier L, Khammar N, Bayle S, Fanlo JL (2005) Biofiltration of volatile organic compounds. Appl Microbiol Biotechnol 68:16–22. https://doi.org/10.1007/s00253-005-1960-z
Manasaki V, Palogos I, Chourdakis I, Tsafantakis K, Gikas P (2021) Techno-economic assessment of landfill gas (LFG) to electric energy: selection of the optimal technology through field-study and model simulation. Chemosphere 269:128688. https://doi.org/10.1016/j.chemosphere.2020.128688
Ménard C, Avalos Ramirez A, Nikiema J, Heitz M (2012a) Biofiltration of methane and trace gases from landfills: a review. Environ Rev 20:40–53. https://doi.org/10.1139/a11-022
Ménard C, Avalos Ramirez A, Nikiema J, Heitz M (2012b) Effect of trace gases, toluene and chlorobenzene, on methane biofiltration: an experimental study. Chem Eng J 204:8–15. https://doi.org/10.1016/j.cej.2012.07.070
Merouani EFO, Khabiri B, Ferdowsi M, Benyoussef EH, Malhautier L, Buelna G, Jones JP, Heitz M (2022) Biofiltration of methane in presence of ethylbenzene or xylene. Atmos Pollut Res 13:101271. https://doi.org/10.1016/j.apr.2021.101271
Merouani EFO, Ferdowsi M, Benyoussef EH, Malhautier L, Buelna G, Jones JP, Heitz M (2023) Biological mitigation of methane in presence of xylene and ethylbenzene in biofilters: effect of pollutants concentrations and empty bed residence time. Process Saf Environ Prot 173:946–960. https://doi.org/10.1016/j.psep.2023.01.056
Mønster J, Kjeldsen P, Scheutz C (2019) Methodologies for measuring fugitive methane emissions from landfills—a review. Waste Manag 87:835–859. https://doi.org/10.1016/j.wasman.2018.12.047
Moreno AI, Arnáiz N, Font R, Carratalá A (2014) Chemical characterization of emissions from a municipal solid waste treatment plant. Waste Manag 34:2393–2399. https://doi.org/10.1016/j.wasman.2014.07.008
Morotti K, Avalos Ramirez A, Jones JP, Heitz M (2011) Analysis and comparison of biotreatment of air polluted with ethanol using biofiltration and biotrickling filtration. Environ Technol 32:1967–1973. https://doi.org/10.1080/09593330.2011.562550
Mudliar S, Giri B, Padoley K, Satpute D, Dixit R, Bhatt P, Pandey R, Juwarkar A, Vaidya A (2010) Bioreactors for treatment of VOCs and odours—a review. J Environ Manag 91:1039–1054. https://doi.org/10.1016/j.jenvman.2010.01.006
Mustafa MF, Liu Y, Duan Z, Guo H, Xu S, Wang H, Lu W (2017) Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. J Hazard Mater 327:35–43. https://doi.org/10.1016/j.jhazmat.2016.11.046
Nikiema J, Brzezinski R, Heitz M (2007) Elimination of methane generated from landfills by biofiltration: a review. Rev Environ Sci Biotechnol 6:261–284. https://doi.org/10.1007/s11157-006-9114-z
Omar H, Rohani S (2015) Treatment of landfill waste, leachate and landfill gas: a review. Front Chem Sci Eng 9:15–32. https://doi.org/10.1007/s11705-015-1501-y
Oyarzun P, Alarcón L, Calabriano G, Bejarano J, Nuñez D, Ruiz-Tagle N, Urrutia H (2019) Trickling filter technology for biotreatment of nitrogenous compounds emitted in exhaust gases from fishmeal plants. J Environ Manag 232:165–170. https://doi.org/10.1016/j.jenvman.2018.11.008
Pecorini I, Rossi E, Iannelli R (2020) Mitigation of methane, NMVOCs and odor emissions in active and passive biofiltration systems at municipal solid waste landfills. Sustain Switz 12:3203. https://doi.org/10.3390/SU12083203
Popov V (2005) A new landfill system for cheaper landfill gas purification. Renew Energy 30:1021–1029. https://doi.org/10.1016/j.renene.2004.09.018
Pratt C, Walcroft AS, Tate KR, Ross DJ, Roy R, Reid MH, Veiga PW (2012) Biofiltration of methane emissions from a dairy farm effluent pond. Agric Ecosyst Environ 152:33–39. https://doi.org/10.1016/j.agee.2012.02.011
Programme Biogaz (2022). https://www.environnement.gouv.qc.ca/programmes/biogaz. Accessed 25 Dec 2023
Purmessur B, Surroop D (2019) Power generation using landfill gas generated from new cell at the existing landfill site. J Environ Chem Eng 7:103060. https://doi.org/10.1016/j.jece.2019.103060
Qian H, Cheng Y, Yang C, Wu S, Zeng G, Xi J (2018) Performance and biofilm characteristics of biotrickling filters for ethylbenzene removal in the presence of saponins. Environ Sci Pollut Res 25:30021–30030. https://doi.org/10.1007/s11356-017-0776-6
Quijano G, Valenzuela EI, Cantero D, Ramírez M, Figueroa-González I (2021) Impact of an anoxic desulfurization process on methane content of the purified biogas. Fuel 303:121256. https://doi.org/10.1016/j.fuel.2021.121256
Rahimpour MR, Jamshidnejad Z, Jokar SM, Karimi G, Ghorbani A, Mohammadi AH (2012) A comparative study of three different methods for flare gas recovery of Asalooye Gas Refinery. J Nat Gas Sci Eng 4:17–28. https://doi.org/10.1016/j.jngse.2011.10.001
Rossi E, Pecorini I, Iannelli R (2020) Methane oxidation of residual landfill gas in a full-scale biofilter: human health risk assessment of volatile and malodours compound emissions. Environ Sci Pollut Res 28:24419–24431. https://doi.org/10.1007/s11356-020-08773-6
Rybarczyk P, Szulczyński B, Gębicki J, Hupka J (2019) Treatment of malodorous air in biotrickling filters: a review. Biochem Eng J 141:146–162. https://doi.org/10.1016/j.bej.2018.10.014
Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, Raymond PA, Dlugokencky EJ, Houweling S, Patra PK, Ciais P (2020) The global methane budget 2000–2017. Earth Syst Sci Data 12:1561–1623. https://doi.org/10.5194/essd-12-1561-2020
Scheutz C, Kjeldsen P (2003) Capacity for biodegradation of CFCs and HCFCs in a methane oxidative counter-gradient laboratory system simulating landfill soil covers. Environ Sci Technol 37:5143–5149. https://doi.org/10.1021/es026464+
Scheutz C, Cassini F, De Schoenmaeker J, Kjeldsen P (2017) Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 2. Waste Manag 63:203–212. https://doi.org/10.1016/j.wasman.2017.01.012
Schirmer WN, Stroparo EC, Gueri MV, Capanema MA, Mazur DL, Juca JF, Martins KG (2022) Biofiltration of fugitive methane emissions from landfills using scum from municipal wastewater treatment plants as alternative substrate. J Mater Cycles Waste Manag 24:2041–2053. https://doi.org/10.1007/s10163-022-01468-9
Sheoran K, Siwal SS, Kapoor D, Singh N, Saini AK, Alsanie WF, Thakur VK (2022) Air pollutants removal using biofiltration technique: a challenge at the frontiers of sustainable environment. ACS Eng Au 2:378–396. https://doi.org/10.1021/acsengineeringau.2c00020
Song U, Lee EJ (2010) Environmental and economical assessment of sewage sludge compost application on soil and plants in a landfill. Resour Conserv Recycl 54:1109–1116. https://doi.org/10.1016/j.resconrec.2010.03.005
Sonil N, Sarangi PK, Abraham J (2012) Microbial biofiltration technology for odour abatement: an introductory review. J Soil Sci Environ Manag 3:28–35. https://doi.org/10.5897/JSSEM11.090
Spigolon LM, Giannotti M, Larocca AP, Russo MA, Souza ND (2018) Landfill siting based on optimisation, multiple decision analysis, and geographic information system analyses. Waste Manag Res 36:606–615. https://doi.org/10.1177/0734242X18773538
Staudinger J, Roberts PV (1996) A critical review of Henry’s law constants for environmental applications. Crit Rev Environ Sci Technol 26:205–297. https://doi.org/10.1080/10643389609388492
Takuwa Y, Matsumoto T, Oshita K, Takaoka M, Morisawa S, Takeda N (2009) Characterization of trace constituents in landfill gas and a comparison of sites in Asia. J Mater Cycles Waste Manag 11:305–311. https://doi.org/10.1007/s10163-009-0257-1
Tassi F, Montegrossi G, Vaselli O, Liccioli C, Moretti S, Nisi B (2009) Degradation of C2–C15 volatile organic compounds in a landfill cover soil. Sci Total Environ 407:4513–4525. https://doi.org/10.1016/j.scitotenv.2009.04.022
Teng C, Zhou K, Peng C, Chen W (2021) Characterization and treatment of landfill leachate: a review. Water Res 203:117525. https://doi.org/10.1016/j.watres.2021.117525
Tenodi S, Krčmar D, Agbaba J, Zrnić K, Radenović M, Ubavin D, Dalmacija B (2020) Assessment of the environmental impact of sanitary and unsanitary parts of a municipal solid waste landfill. J Environ Manag 258:110019. https://doi.org/10.1016/j.jenvman.2019.110019
Themelis NJ, Ulloa PA (2007) Methane generation in landfills. Renew Energy 32:1243–1257. https://doi.org/10.1016/j.renene.2006.04.020
Thomasen TB, Scheutz C, Kjeldsen P (2019) Treatment of landfill gas with low methane content by biocover systems. Waste Manag 84:29–37. https://doi.org/10.1016/j.wasman.2018.11.011
Tilahun E, Sahinkaya E, Calli B (2018) A comparative assessment of membrane bioscrubber and classical bioscrubber for biogas purification. In: 20th international conference on biomass science and technology, Berlin
Tomatis M, Moreira MT, Xu H, Deng W, He J, Parvez AM (2019) Removal of VOCs from waste gases using various thermal oxidizers: a comparative study based on life cycle assessment and cost analysis in China. J Clean Prod 233:808–818. https://doi.org/10.1016/j.jclepro.2019.06.131
UN (2022) United nations, World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. In: U. N. https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100. Accessed 25 Dec 2023
Valenzuela-Heredia D, Aroca G (2023) Methane biofiltration for the treatment of a simulated diluted biogas emission containing ammonia and hydrogen sulfide. Chem Eng J. https://doi.org/10.1016/j.cej.2023.143704
Vergara-Fernandez A, Scott F, Carreno-Lopez F, Aroca G, Moreno-Casas P, Gonzalez-Sanchez A, Munoz R (2020) A comparative assessment of the performance of fungal-bacterial and fungal biofilters for methane abatement. J Environ Chem Eng 8:104421. https://doi.org/10.1016/j.jece.2020.104421
Vu HL, Ng KTW, Richter A (2017) Optimization of first order decay gas generation model parameters for landfills located in cold semi-arid climates. Waste Manag 69:315–324. https://doi.org/10.1016/j.wasman.2017.08.028
Wang X, Wang Q, Li S, Li W (2015) Degradation pathway and kinetic analysis for p-xylene removal by a novel Pandoraea sp. strain WL1 and its application in a biotrickling filter. J Hazard Mater 288:17–24. https://doi.org/10.1016/j.jhazmat.2015.02.019
Wijekoon P, Koliyabandara PA, Cooray AT, Lam SS, Athapattu BC, Vithanage M (2022) Progress and prospects in mitigation of landfill leachate pollution: risk, pollution potential, treatment and challenges. J Hazard Mater 421:126627. https://doi.org/10.1016/j.jhazmat.2021.126627
Winslow KM, Laux SJ, Townsend TG (2019) An economic and environmental assessment on landfill gas to vehicle fuel conversion for waste hauling operations. Resour Conserv Recycl 142:155–166. https://doi.org/10.1016/j.resconrec.2018.11.021
Wu J, Ma Y (2016) Experimental study on performance of a biogas engine driven air source heat pump system powered by renewable landfill gas. Int J Refrig 62:19–29. https://doi.org/10.1016/j.ijrefrig.2015.08.023
Xiaoli C, Shimaoka T, Xianyan C, Qiang G, Youcai Z (2007) Characteristics and mobility of heavy metals in an MSW landfill: implications in risk assessment and reclamation. J Hazard Mater 144:485–491. https://doi.org/10.1016/j.jhazmat.2006.10.056
Yang Z, Liu J, Cao J, Sheng D, Cai T, Li J (2017) A comparative study of pilot-scale bio-trickling filters with counter-and cross-current flow patterns in the treatment of emissions from chemical fibre wastewater treatment plant. Bioresour Technol 243:78–84. https://doi.org/10.1016/j.biortech.2017.06.060
Yang C, Qian H, Li X, Cheng Y, He H, Zeng G, Xi J (2018) Simultaneous removal of multicomponent VOCs in biofilters. Trends Biotechnol 36:673–685. https://doi.org/10.1016/j.tibtech.2018.02.004
Yechiel A, Shevah Y (2016) Optimization of energy generation using landfill biogas. J Energy Storage 7:93–98. https://doi.org/10.1016/j.est.2016.05.002
Yousefinejad A, Zamir SM, Nosrati M (2019) Fungal elimination of toluene vapor in one-and two-liquid phase biotrickling filters: effects of inlet concentration, operating temperature, and peroxidase enzyme activity. J Environ Manag 251:109554. https://doi.org/10.1016/j.jenvman.2019.109554
Zdeb M, Lebiocka M (2016) Microbial removal of selected volatile organic compounds from the model landfill gas. Ecol Chem Eng S 23:215–228. https://doi.org/10.1515/eces-2016-0014
Zhang Y, Yue D, Liu J, Lu P, Wang Y, Liu J, Nie Y (2012) Release of non-methane organic compounds during simulated landfilling of aerobically pretreated municipal solid waste. J Environ Manag 101:54–58. https://doi.org/10.1016/j.jenvman.2011.10.018
Zhang Y, Liu J, Qin Y, Yang Z, Cao J, Xing Y, Li J (2019) Performance and microbial community evolution of toluene degradation using a fungi-based bio-trickling filter. J Hazard Mater 365:642–649. https://doi.org/10.1016/j.jhazmat.2018.11.062
Zhou H, Meng A, Long Y, Li Q, Zhang Y (2014) An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value. Renew Sustain Energy Rev 36:107–122. https://doi.org/10.1016/j.rser.2014.04.024
Acknowledgements
M. Heitz would like to thank the Fonds de Recherche du Québec—Nature et Technologies (FRQNT) for financially supporting this project. M. Heitz and P. Jones would also like to thank the Natural Science and Engineering Research Council of Canada (NSERC-Discovery Grant) for their financial support.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
El Farouk Omar Merouani: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing - original draft. Milad Ferdowsi: Conceptualization, Methodology, Writing—review & editing El Hadi Benyoussef: Writing—review & editing, Supervision Luc Malhautier: Writing—review & editing, Supervision Gerardo Buelna: Writing—review & editing, Supervision, Project administration J. Peter Jones: Writing—review & editing, Supervision, Project administration. Michèle Heitz: Conceptualization, Methodology, Validation, Writing—review & editing, Supervision, Project administration, Funding acquisition.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethical approval
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Merouani, E.F.O., Ferdowsi, M., Buelna, G. et al. Exploring the potential of biofiltration for mitigating harmful gaseous emissions from small or old landfills: a review. Biodegradation 35, 469–491 (2024). https://doi.org/10.1007/s10532-024-10082-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10532-024-10082-5