Skip to main content

Advertisement

Log in

Association of Laccase from Bacillus cereus O2-B and Pseudomonas aeruginosa O1-P with the bio-degradation of polymers: an in vitro to in silico approach

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Plastic accumulation has become a serious environmental threat. Mitigation of plastic is important to save the ecosystem of our planet. With current research being focused on microbial degradation of plastics, microbes with the potential to degrade polyethylene were isolated in this study. In vitro studies were performed to define the correlation between the degrading capability of the isolates and laccase, a common oxidase enzyme. Instrumental analyses were used to evaluate morphological and chemical modifications in polyethylene, which demonstrated a steady onset of the degradation process in case of both isolates, Pseudomonas aeruginosa O1-P and Bacillus cereus O2-B. To understand the efficiency of laccase in degrading other common polymers, in silico approach was employed, for which 3D structures of laccase in both the isolates were constructed via homology modeling and molecular docking was performed, revealing that the enzyme laccase can be exploited to degrade a wide range of polymers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article.

References

  • Ali SS et al (2021) Degradation of conventional plastic wastes in the environment: a review on current status of knowledge and future perspectives of disposal. Sci Total Environ 771:144719

    Article  CAS  PubMed  Google Scholar 

  • Alippi AM (2019) Data associated with the characterization and presumptive identification of Bacillus and related species isolated from honey samples by using HiCrome Bacillus agar. Data Brief 25:104206

    Article  PubMed  PubMed Central  Google Scholar 

  • Amobonye A, Bhagwat P, Singh S, Pillai S (2021) Plastic biodegradation: frontline microbes and their enzymes. Sci Total Environ 759:143536

    Article  CAS  PubMed  Google Scholar 

  • Arregui L et al (2019) Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact 18:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auta HS, Emenike CU, Fauziah SH (2017) Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ Pollut 231:1552–1559

    Article  CAS  PubMed  Google Scholar 

  • Avanzi IR et al (2017) Rapid bacteria identification from environmental mining samples using MALDI-TOF MS analysis. Environ Sci Pollut Res Int 24:3717–3726

    Article  CAS  PubMed  Google Scholar 

  • Bardají DKR, Furlan JPR, Stehling EG (2019) Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil. Arch Microbiol 201:699–704

    Article  PubMed  Google Scholar 

  • Bhatia M, Girdhar A, Tiwari A, Nayarisseri A (2014) Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach. Springerplus 3:497

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowie JU, Lüthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Roy B, Roy D, Banerjee R (2010) Enzyme-mediated biodegradation of heat treated commercial polyethylene by Staphylococcal species. Polym Degrad Stab 95:195–200

    Article  CAS  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cregut M, Bedas M, Durand M-J, Thouand G (2013) New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process. Biotechnol Adv 31:1634–1647

    Article  CAS  PubMed  Google Scholar 

  • Danso D, Chow J, Streit WR (2019) Plastics: environmental and biotechnological perspectives on microbial degradation. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01095-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Das G, Bordoloi NK, Rai SK, Mukherjee AK, Karak N (2012) Biodegradable and biocompatible epoxidized vegetable oil modified thermostable poly(vinyl chloride): thermal and performance characteristics post biodegradation with Pseudomonas aeruginosa and Achromobacter sp. J Hazard Mater 209–210:434–442

    Article  PubMed  Google Scholar 

  • Dey AS, Bose H, Mohapatra B, Sar P (2020) Biodegradation of unpretreated low-density polyethylene (LDPE) by Stenotrophomonas sp. and Achromobacter sp, isolated from waste dumpsite and drilling fluid. Front Microbiol 11:603210

    Article  PubMed  PubMed Central  Google Scholar 

  • Duru CE, Duru IA, Enyoh CE (2021) In silico binding affinity analysis of microplastic compounds on PET hydrolase enzyme target of Ideonella sakaiensis. Bull Natl Res Cent 45:1–8

    Article  Google Scholar 

  • Esmaeili A, Pourbabaee AA, Alikhani HA, Shabani F, Esmaeili E (2013) Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS ONE 8:e71720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotopoulou KN, Karapanagioti HK (2017) Degradation of various plastics in the environment. The handbook of environmental chemistry. Springer, New York, pp 71–92

    Google Scholar 

  • Gan Z, Zhang H (2019) PMBD: a comprehensive plastics microbial biodegradation database. Database. https://doi.org/10.1093/database/baz119

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubbard RE, Kamran Haider M (2010) Hydrogen bonds in proteins: role and strength. eLS. https://doi.org/10.1002/9780470015902.a0003011.pub2

    Article  Google Scholar 

  • Jaiswal S, Sharma B, Shukla P (2020) Integrated approaches in microbial degradation of plastics. Environ Technol Innov 17:100567

    Article  Google Scholar 

  • Jeon HJ, Kim MN (2013) Isolation of a thermophilic bacterium capable of low-molecular-weight polyethylene degradation. Biodegradation 24:89–98

    Article  CAS  PubMed  Google Scholar 

  • Joo S et al (2018) Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat Commun 9:382

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang BR, Kim SB, Song HA, Lee TK (2019) Accelerating the biodegradation of high-density polyethylene (HDPE) Using Bjerkandera adusta TBB-03 and Lignocellulose substrates. Microorganisms 7:304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar Sen S, Raut S (2015) Microbial degradation of low density polyethylene (LDPE): a review. J Environ Chem Eng 3:462–473

    Article  CAS  Google Scholar 

  • Kunlere IO, Fagade OE, Nwadike BI (2019) Biodegradation of low density polyethylene (LDPE) by certain indigenous bacteria and fungi. Int J Environ Stud 76:428–440

    Article  CAS  Google Scholar 

  • Kyaw BM, Champakalakshmi R, Sakharkar MK, Lim CS, Sakharkar KR (2012) Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J Microbiol 52:411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Launer PJ, Arkles B (2013) Infrared analysis of organosilicon compounds: spectra-structure correlations. In silicon compounds: silanes and silicones 3rd edition 223–226

  • Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  PubMed  Google Scholar 

  • Mahalakshmi V, Siddiq A (2012) Analysis of polyethylene degrading potentials of microorganisms isolated from compost soil. Int J Pharm Biol Arch 3:1190–1196

    Google Scholar 

  • Maroof L et al (2020) Identification and characterization of low density polyethylene-degrading bacteria isolated from soils of waste disposal sites. Environ Eng Res. https://doi.org/10.4491/eer.2020.167

    Article  Google Scholar 

  • Mohanan N, Montazer Z, Sharma PK, Levin DB (2020) Microbial and enzymatic degradation of synthetic plastics. Front Microbiol 11:580709

    Article  PubMed  PubMed Central  Google Scholar 

  • Montazer Z, Habibi Najafi MB, Levin DB (2020) Challenges with verifying microbial degradation of polyethylene. Polymers 12:123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris GM et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  • Mukherjee S, Kundu PP (2014) Alkaline fungal degradation of oxidized polyethylene in black liquor: studies on the effect of lignin peroxidases and manganese peroxidases. J Appl Polym Sci. https://doi.org/10.1002/app.40738

    Article  Google Scholar 

  • Mukherjee S, Chowdhuri UR, Kundu PP (2016) Bio-degradation of polyethylene waste by simultaneous use of two bacteria: Bacillus licheniformis for production of bio-surfactant and Lysinibacillus fusiformis for bio-degradation. RSC Adv 6:2982–2992

    Article  CAS  Google Scholar 

  • Ndahebwa Muhonja C, Magoma G, Imbuga M, Makonde HM (2018) Molecular characterization of low-density polyethene (LDPE) degrading bacteria and fungi from Dandora Dumpsite, Nairobi, Kenya. Int J Microbiol 2018:4167845

    Article  PubMed  PubMed Central  Google Scholar 

  • Pontius J, Richelle J, Wodak SJ (1996) Deviations from standard atomic volumes as a quality measure for protein crystal structures. J Mol Biol 264:121–136

    Article  CAS  PubMed  Google Scholar 

  • Pramila R, Vijaya Ramesh K (2015) Potential biodegradation of low density polyethylene (LDPE) by Acinetobacter baumannii. J Bacteriol Res. https://doi.org/10.5897/JBR201.0152

    Article  Google Scholar 

  • Priya A, Dutta K, Daverey A (2022) A comprehensive biotechnological and molecular insight into plastic degradation by microbial community. J Chem Technol Biotechnol 97:381–390

    Article  CAS  Google Scholar 

  • Purohit J, Chattopadhyay A, Teli B (2020) Metagenomic exploration of plastic degrading microbes for biotechnological application. Curr Genom 21:253–270

    Article  CAS  Google Scholar 

  • Restrepo-Flórez J-M, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene—a review. Int Biodeterior Biodegradation 88:83–90

    Article  Google Scholar 

  • Ru J, Huo Y, Yang Y (2020) Microbial degradation and valorization of plastic wastes. Front Microbiol 11:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Saeed S, Iqbal A, Deeba F (2022) Biodegradation study of polyethylene and PVC using naturally occurring plastic degrading microbes. Arch Microbiol 204:497

    Article  CAS  PubMed  Google Scholar 

  • Sangale MK, Shahnawaz M, Ade AB (2019) Gas chromatography-mass spectra analysis and deleterious potential of fungal based polythene-degradation products. Sci Rep 9:1599

    Article  PubMed  PubMed Central  Google Scholar 

  • Santo M, Weitsman R, Sivan A (2013) The role of the copper-binding enzyme—laccase—in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegradation 84:204–210

    Article  CAS  Google Scholar 

  • Scheiner S, Kar T, Pattanayak J (2002) Comparison of various types of hydrogen bonds involving aromatic amino acids. J Am Chem Soc 124:13257–13264

    Article  CAS  PubMed  Google Scholar 

  • Shahnawaz M, Sangale MK, Ade AB (2016) Bacteria-based polythene degradation products: GC-MS analysis and toxicity testing. Environ Sci Pollut Res Int 23:10733–10741

    Article  CAS  PubMed  Google Scholar 

  • Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22:422–426

    Article  CAS  PubMed  Google Scholar 

  • Smith, BC (2017) Alcohols—the rest of the story. Spectroscopy Online https://www.spectroscopyonline.com/view/alcohols-rest-story-alf3

  • Sowmya HV, Ramalingappa K, M. & Thippeswamy, B. (2014) Degradation of polyethylene by Trichoderma harzianum—SEM, FTIR, and NMR analyses. Environ Monit Assess 186:6577–6586

    Article  CAS  PubMed  Google Scholar 

  • Sumathi T, Viswanath B, Sri Lakshmi A, SaiGopal DVR (2016) Production of Laccase by Cochliobolus sp. isolated from plastic dumped soils and their ability to degrade low molecular weight PVC. Biochem Res Int 2016:9519527

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki T et al (2003) A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence, and expression. Biosci Biotechnol Biochem 67:2167–2175

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanasupawat S, Takehana T, Yoshida S, Hiraga K, Oda K (2016) Ideonella sakaiensis sp nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). Int J Syst Evol Microbiol 66:2813–2818

    Article  CAS  PubMed  Google Scholar 

  • Thompson RC, Swan SH, Moore CJ, vom Saal FS (2009) Our plastic age. Philos Trans R Soc Lond B 364:1973–1976

    Article  Google Scholar 

  • Volkamer A, Kuhn D, Grombacher T, Rippmann F, Rarey M (2012) Combining global and local measures for structure-based druggability predictions. J Chem Inf Model 52:360–372

    Article  CAS  PubMed  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadalam PK et al (2021) Antiviral essential oil components against SARS-CoV-2 in pre-procedural mouth rinses for dental settings during COVID-19: a computational study. Front Chem 9:642026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Yang Y, Wu W-M, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Nanotechnology Research Centre (NRC) and SRM Central Instrumentation Facility (SCIF), SRMIST for providing the research facilities.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

SF, RN and TM contributed to the conception, design of the experiments. SF contributed to data acquisition and drafted the manuscript. SF, RN, TM contributed to data analysis and have critically revised the manuscript. All authors gave final approval and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Rajnish Narayanan.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 446 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafana Farveen, M., Madhavan, T. & Narayanan, R. Association of Laccase from Bacillus cereus O2-B and Pseudomonas aeruginosa O1-P with the bio-degradation of polymers: an in vitro to in silico approach. Biodegradation 34, 383–403 (2023). https://doi.org/10.1007/s10532-023-10028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-023-10028-3

Keywords

Navigation