Skip to main content
Log in

A critical review on microbial degradation of petroleum-based plastics: quantitatively effects of chemical addition in cultivation media on biodegradation efficiency

  • Review Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Petroleum-based plastics (PBP) with different properties have been developed to suit various needs of modern lives. Nevertheless, these well-developed properties also present the double-edged sword effect that significantly threatens the sustainability of the environment. This work focuses on the impact of microbial cultivating conditions (the elementary compositions and temperature) to provide insightful information for the process optimization of microbial degradation. The major elementary compositions in cultivation media and temperature from the literature were radically reviewed and assessed using the constructed supervised machine learning algorithm. Fifty-two literatures were collected as a training dataset to investigate the impact of major chemical elements and cultivation temperature upon PBP biodegradation. Among six singular parameters (NH4+, K+, PO43−, Mg2+, Ca2+, and temperature) and thirty corresponding binary parameters, four singular (NH4+, K+, PO43−, and Mg2+) and six binary parameters (NH4+/K+, NH4+/PO43−, NH4+/Ca2+, K+/PO43−, PO43−/Mg2+, Mg2+/Temp) were identified as statistically significant towards microbial degradation through analysis of variance (ANOVA). The binary effect (PO43−/Mg2+) is found to be the most statistically significant towards the microbial degradation of PBP. The concentration range, which locates at 0.1–0.6 g/L for Mg2+ and 0–2.8 g/L for PO43−, was identified to contribute to the maximum PBP biodegradation. Among all the investigated elements, Mg2+ is the only element that is statistically and significantly associated with the variations of cultivation temperature. The optimal preparation conditions within ± 20% uncertainties based upon the range of collected literature reports are recommended.

Graphical abstract

Five representative cultivation elementary compositions (NH4+, K+, PO43−, Mg2+, and Ca2+) and temperature were reviewed from fifty two different literature reports to investigate their impacts on the microbial degradation of PBP using supervised machine learning algorithm. The optimal cultivation conditions based upon collected literature reports to achieve biodegradation over 80% were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akan OD et al (2021) Plastic waste: Status, degradation and microbial management options for Africa. J Environ Manage. https://doi.org/10.1016/j.jenvman.2021.112758

    Article  PubMed  Google Scholar 

  • Ali MI et al (2014) Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. J Basic Microbiol 54(1):18–27

    CAS  PubMed  Google Scholar 

  • Ali SS et al (2021a) Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Sci Tot Environ. https://doi.org/10.1016/j.scitotenv.2020.144719

    Article  Google Scholar 

  • Ali SS et al (2021b) Plastic wastes biodegradation: mechanisms, challenges and future prospects. Sci Tot Environ. https://doi.org/10.1016/j.scitotenv.2021.146590

    Article  Google Scholar 

  • Ameen F et al (2015) Biodegradation of low density polyethylene (LDPE) by mangrove fungi from the red sea coast. Progress Rubber Plast Recycl Technol 31(2):125–143

    Google Scholar 

  • Aravinthan A et al (2016) Synergistic growth of Bacillus and Pseudomonas and its degradation potential on pretreated polypropylene. Prep Biochem Biotechnol 46(2):109–115

    CAS  PubMed  Google Scholar 

  • Arefian M et al (2013) Polycarbonate biodegradation by isolated molds using clear-zone and atomic force microscopic methods. Int J Environ Sci Technol 10(6):1319–1324

    CAS  Google Scholar 

  • Arkatkar A et al (2009) Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int Biodeterior Biodegrad 63(1):106–111

    CAS  Google Scholar 

  • Arkatkar A et al (2010) Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int Biodeterior Biodegrad 64(6):530–536

    CAS  Google Scholar 

  • Atiq N et al (2010) Isolation and identification of polystyrene biodegrading bacteria from soil. Afr J Microbiol Res 4(14):1537–1541

    CAS  Google Scholar 

  • Awoyera PO, Adesina A (2020) Plastic wastes to construction products: status, limitations and future perspective. Case Stud Construct Mater. https://doi.org/10.1016/j.cscm.2020.e00330

    Article  Google Scholar 

  • Balasubramanian V et al (2014) Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical, and biological treatments. Environ Sci Pollut Res 21(21):12549–12562

    CAS  Google Scholar 

  • Becerril-Arreola R, Bucklin RE (2021) Beverage bottle capacity, packaging efficiency, and the potential for plastic waste reduction. Sci Rep. https://doi.org/10.1038/s41598-021-82983-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhutange SP, Latkar MV, Chakrabarti T (2021) Influence of direct urease source incorporation on mechanical properties of concrete. Construct Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.124116

    Article  Google Scholar 

  • Boll M et al (2020) Microbial degradation of phthalates: biochemistry and environmental implications. Environ Microbiol Rep 12(1):3–15

    CAS  PubMed  Google Scholar 

  • Brunner I et al (2018) Ability of fungi isolated from plastic debris floating in the shoreline of a lake to degrade plastics. PLoS ONE. https://doi.org/10.1371/journal.pone.0202047

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan J, Aoki C, Pickel VM (1990) Optimization of differential immunogold-silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding. J Neurosci Methods 33(2–3):113–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai HL et al (2017) Effects of calcium on the performance, bacterial population and microbial metabolism of a denitrifying phosphorus removal system. Bioresour Technol 243:828–835

    CAS  PubMed  Google Scholar 

  • Das P et al (2021) Value-added products from thermochemical treatments of contaminated e-waste plastics. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.129409

    Article  PubMed  Google Scholar 

  • DSouza GC et al (2021) Fungal biodegradation of low-density polyethylene using consortium of Aspergillus species under controlled conditions. Heliyon 7(5):7008–7018

    Google Scholar 

  • Dyhrman ST et al (2006) Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439(7072):68–71

    CAS  PubMed  Google Scholar 

  • El-Morsy EM, Hassan HM, Ahmed E (2017) Biodegradative activities of fungal isolates from plastic contaminated soils. Mycosphere 8(8):1071–1087

    Google Scholar 

  • Esmaeili A et al (2013) Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS ONE. https://doi.org/10.1371/journal.pone.0071720

    Article  PubMed  PubMed Central  Google Scholar 

  • Farhan M et al (2021) Biodegradation of chlorpyrifos using isolates from contaminated agricultural soil, its kinetic studies. Sci Rep 11(1):10320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flydal MI et al (2021) Levalbuterol lowers the feedback inhibition by dopamine and delays misfolding and aggregation in tyrosine hydroxylase. Biochimie 183:126–132

    CAS  PubMed  Google Scholar 

  • Fontanella S et al (2013) Comparison of biodegradability of various polypropylene films containing pro-oxidant additives based on Mn, Mn/Fe or CO. Polym Degrad Stab 98(4):875–884

    CAS  Google Scholar 

  • Gajendiran A, Krishnamoorthy S, Abraham J (2016) Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech. https://doi.org/10.1007/s13205-016-0394-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Galitskaya P et al (2021) Response of bacterial and fungal communities to high petroleum pollution in different soils. Sci Rep 11(1):164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao TT et al (2021) Overexpression of tyrosine decarboxylase (MdTYDC) enhances drought tolerance in Malus domestica. Sci Horticult. https://doi.org/10.1016/j.scienta.2021.110425

    Article  Google Scholar 

  • Giacomucci L et al (2019) Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnol 52:35–41

    CAS  Google Scholar 

  • Giacomucci L et al (2020) Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia. Marine Environ Res. https://doi.org/10.1016/j.marenvres.2020.104949

    Article  Google Scholar 

  • Gonzalez-Fernandez D et al (2021) Floating macrolitter leaked from Europe into the ocean. Nat Sustain 4(6):474–483

    Google Scholar 

  • Gopinath KP et al (2020) A critical review on the influence of energy, environmental and economic factors on various processes used to handle and recycle plastic wastes: development of a comprehensive index. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.123031

    Article  Google Scholar 

  • Gravouil K et al (2017) Transcriptomics and lipidomics of the environmental strain Rhodococcus ruber point out consumption pathways and potential metabolic bottlenecks for polyethylene degradation. Environ Sci Technol 51(9):5172–5181

    CAS  PubMed  Google Scholar 

  • Gribun A et al (2005) The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation. J Biol Chem 280(16):16185–16196

    CAS  PubMed  Google Scholar 

  • Groisman EA et al (2013) Bacterial Mg2+ homeostasis, transport, and virulence. Annu Rev Genet 47(47):625–646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan QF et al (2020) An all-natural bioinspired structural material for plastic replacement. Nat Commun 11(1):5401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harpin ML et al (1985) Direct sensitive immunocharacterization of gangliosides on plastic thin-layer plates using peroxidase staining. J Immunol Methods 78(1):135–141

    CAS  PubMed  Google Scholar 

  • Haynes WC, Kuehne RW, Rhodes LJ (1954) The effect of potassium upon the growth of micrococcus-pyogenes. Appl Microbiol 2(6):339–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haynes WC, Kuehne RW, Rhodes LJ (1957) The effect of potassium upon the growth of micrococcus-pyogenes. 2. The influence of incubation temperature and glucose. Appl Microbiol 5(6):382–385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito T, Yamaguchi Y, Handa H (2021) Exploiting ubiquitin ligase cereblon as a target for small-molecule compounds in medicine and chemical biology. Cell Chem Biol 28(7):987–999

    CAS  PubMed  Google Scholar 

  • Iwata T et al (2021) Recent developments in microbial polyester fiber and polysaccharide ester derivative research. Polym J 53(2):221–238

    CAS  Google Scholar 

  • Jaiswal S, Sharma B, Shukla P (2020) Integrated approaches in microbial degradation of plastics. Environ Technol Innov. https://doi.org/10.1016/j.eti.2019.100567

    Article  Google Scholar 

  • Jandl R et al (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137(3–4):253–268

    CAS  Google Scholar 

  • Jefferson M (2019) Whither plastics? Petrochemicals, plastics and sustainability in a garbage-riddled world. Energy Res Soc Sci. https://doi.org/10.1016/j.erss.2019.101229

    Article  Google Scholar 

  • Jeon HJ, Kim MN (2016) Isolation of mesophilic bacterium for biodegradation of polypropylene. Int Biodeterior Biodegrad 115:244–249

    CAS  Google Scholar 

  • Jeyakumar D, Chirsteen J, Doble M (2013) Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Biores Technol 148:78–85

    CAS  Google Scholar 

  • Jie XY et al (2020) Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nat Catal 3(11):902–912

    CAS  Google Scholar 

  • Khan S et al (2017) Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environ Pollut 225:469–480

    CAS  PubMed  Google Scholar 

  • Krueger MC et al (2015) Potential of wood-rotting fungi to attack polystyrene sulfonate and its depolymerisation by Gloeophyllum trabeum via hydroquinone-driven fenton chemistry. PLoS ONE 10(7):1–17

    Google Scholar 

  • Latorre I et al (2012) PVC biodeterioration and DEHP leaching by DEHP-degrading bacteria. Int Biodeterior Biodegrad 69:73–81

    CAS  Google Scholar 

  • Lebreton L, Andrady A (2019) Future scenarios of global plastic waste generation and disposal. Palgrave Commun. https://doi.org/10.1057/s41599-018-0212-

    Article  Google Scholar 

  • Li H et al (2021b) Utilization of phosphogypsum waste through a temperature swing recyclable acid process and its application for transesterification. Process Safety and Environmental Protection 156:295–303

    CAS  Google Scholar 

  • Liebminger S et al (2007) Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium citrinum. Biocatal Biotransform 25(2–4):171–177

    CAS  Google Scholar 

  • Mckeehan WL, Ham RG (1978) Calcium and magnesium ions and the regulation of multiplication in normal and transformed cells. Nature 275:756–758

    CAS  PubMed  Google Scholar 

  • Meereboer KW et al (2021) The effect of natural fillers on the marine biodegradation behaviour of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Sci Rep 11(1):911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer-Cifuentes IE, Ozturk B (2021) Mle046 is a marine mesophilic MHETase-like enzyme. Front Microbiol. https://doi.org/10.3389/fmicb.2021.693985

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyazaki K et al (2012) Study on biodegradation mechanism of novel oxo-biodegradable polypropylenes in an aqueous medium. Polym Degrad Stab 97(11):2177–2184

    CAS  Google Scholar 

  • Mohan AJ et al (2016) Microbial assisted high impact polystyrene (HIPS) degradation. Biores Technol 213:204–207

    CAS  Google Scholar 

  • Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber. Biodegradation 19:851–858

    CAS  PubMed  Google Scholar 

  • Muhonja CN et al (2018) Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS ONE. https://doi.org/10.1371/journal.pone.0198446

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller T et al (2006) Ammonium toxicity in bacteria. Curr Microbiol 52(5):400–406

    PubMed  Google Scholar 

  • Munir E et al (2018) Plastic degrading fungi Trichoderma viride and Aspergillus nomius isolated from local landfill soil in Medan. In: Friendly City 4 from Research to Implementation for Better Sustainability

  • Nikolic V et al (2013) Biodegradation of starch-graft-polystyrene and starch-graft-poly(methacrylic acid) copolymers in model river water. J Serb Chem Soc 78(9):1425–1441

    CAS  Google Scholar 

  • Ojha N et al (2017) Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci Rep. https://doi.org/10.1038/srep39515

  • Okumura M, Noi K, Inaba K (2021) Visualization of structural dynamics of protein disulfide isomerase enzymes in catalysis of oxidative folding and reductive unfolding. Curr Opin Struct Biol 66:49–57

    CAS  PubMed  Google Scholar 

  • Park SY, Kim CG (2019) Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere 222:527–533

    CAS  PubMed  Google Scholar 

  • Pellis A et al (2019) Enzymatic synthesis of lignin derivable pyridine based polyesters for the substitution of petroleum derived plastics. Nat Commun 10:1762

    PubMed  PubMed Central  Google Scholar 

  • Peng YH et al (2014) Degradation of polyurethane by bacterium isolated from soil and assessment of polyurethanolytic activity of a Pseudomonas putida strain. Environ Sci Pollut Res 21(16):9529–9537

    CAS  Google Scholar 

  • Peng BY et al (2020) Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): broad and limited extent depolymerization. Environ Pollut. https://doi.org/10.1016/j.envpol.2020.115206

    Article  PubMed  Google Scholar 

  • Pramila R, Ramesh KV (2011) Biodegradation of low density polyethylene (LDPE) by fungi isolated from marine water—a SEM analysis. Afr J Microbiol Res 5(28):5013–5018

    CAS  Google Scholar 

  • Purahong W et al (2021) Back to the future: decomposability of a biobased and biodegradable plastic in field soil environments and its microbiome under ambient and future climates. Environ Sci Technol 55(18):12337–12351

    CAS  PubMed  Google Scholar 

  • Qi X, Ren YW, Wang XZ (2017) New advances in the biodegradation of Poly(lactic) acid. Int Biodeterior Biodegrad 117:215–223

    CAS  Google Scholar 

  • Raddadi N, Fava F (2019) Biodegradation of oil-based plastics in the environment: existing knowledge and needs of research and innovation. Sci Total Environ 679:148–158

    CAS  PubMed  Google Scholar 

  • Rahimi A, Garcia JM (2017) Chemical recycling of waste plastics for new materials production. Nat Rev Chem. https://doi.org/10.1038/s41570-017-0046

    Article  Google Scholar 

  • Russell JR et al (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77(17):6076–6084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakhalkar S, Mishra RL (2013) Screening and identification of soil fungi with potential of plastic degrading ability. Indian J Appl Res 3(12):1–3

    Google Scholar 

  • Salgado CA et al (2021) Identification and characterization of a polyurethanase with lipase activity from Serratia liquefaciens isolated from cold raw cow’s milk. Food Chem. https://doi.org/10.1016/j.foodchem.2020.127954

    Article  PubMed  Google Scholar 

  • Sanchez C (2020) Fungal potential for the degradation of petroleum-based polymers: an overview of macro- and microplastics biodegradation. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2019.107501

    Article  PubMed  Google Scholar 

  • Saravanan A et al (2021) A review on catalytic-enzyme degradation of toxic environmental pollutants: microbial enzymes. J Hazard Mater 419:126451–126461

    CAS  PubMed  Google Scholar 

  • Schyns ZOG, Shaver MP (2021) Mechanical recycling of packaging plastics: a review. Macromol Rapid Commun. https://doi.org/10.1002/marc.202000415

    Article  PubMed  Google Scholar 

  • Sekhar VC et al (2016) Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. J Hazard Mater 318:347–354

    CAS  PubMed  Google Scholar 

  • Shawky BT et al (1987) Ammonium-nitrogen metabolism and nitrogen-fixation in Azotobacter vinelandii. Acta Biotechnol 7(6):555–562

    CAS  Google Scholar 

  • Shi JX et al (2020) Enhanced biodegradation of quinoline and indole with a novel symbiotic system of Polyurethane-chlorella-bacteria. J Water Process Eng 37:141136.

  • Shimpi N et al (2012) Biodegradation of polystyrene (PS)-poly(lactic acid) (PLA) nanocomposites using Pseudomonas aeruginosa. Macromol Res 20(2):181–187

    CAS  Google Scholar 

  • Singh J, Gupta KC (2014) Screening and identification of low density polyethylene (LDPE) degrading soil fungi isolated from polythene polluted sites around Gwalior City (MP). Int J Curr Microbiol App Sci 3(6):443–448

    CAS  Google Scholar 

  • Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72(2):346–352

    CAS  PubMed  Google Scholar 

  • Skariyachan S et al (2016) Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene. Environ Sci Pollut Res 23(18):18307–18319

    CAS  Google Scholar 

  • Skariyachan S et al (2017) Enhanced biodegradation of low and high-density polyethylene by novel bacterial consortia formulated from plastic-contaminated cow dung under thermophilic conditions. Environ Sci Pollut Res 24(9):8443–8457

    CAS  Google Scholar 

  • Skariyachan S et al (2018) Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sp. and Aneurinibacillus sp screened from waste management landfills and sewage treatment plants. Polym Degrad Stabil 149:52–68

    CAS  Google Scholar 

  • Skariyachan S et al (2021) Novel consortia of enterobacter and pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene. J Environ Manage. https://doi.org/10.1016/j.jenvman.2021.112030

    Article  PubMed  Google Scholar 

  • Sponton M et al (2013) Biodegradation study by Pseudomonas sp of flexible polyurethane foams derived from castor oil. Int Biodeterior Biodegrad 85:85–94

    CAS  Google Scholar 

  • Stepien AE et al (2017) Assessment of the impact of bacteria Pseudomonas denitrificans, Pseudomonas fluorescens, Bacillus subtilis and yeast Yarrowia lipolytica on commercial poly(ether urethanes). Polym Test 63:484–493

    CAS  Google Scholar 

  • Sun Y et al (2007a) Analysis of trace elements in corn by inductively coupled plasma-atomic emission spectrometry. Food Sci 28(2):236–237

    CAS  Google Scholar 

  • Sun Y et al (2007b) Study on the spectra of spruce lignin with chlorine dioxide oxidation. Spectrosc Spectr Anal 27(8):1551–1554

    CAS  Google Scholar 

  • Sun Y et al (2018) Artificial neural networks with response surface methodology for optimization of selective CO2 hydrogenation using K-promoted iron catalyst in a microchannel reactor. J CO2 Util 23:10–21

    Google Scholar 

  • Sun Y et al (2020a) A simple coupled ANNs-RSM approach in modeling product distribution of Fischer–Tropsch synthesis using a microchannel reactor with Ru-promoted Co/Al2O3 catalyst. Int J Energy Res 44(2):1046–1061

    CAS  Google Scholar 

  • Sun Y et al (2020b) Optimization of biohydrogen production using acid pretreated corn stover hydrolysate followed by nickel nanoparticle addition. Int J Energy Res 44(3):1843–1857

    CAS  Google Scholar 

  • Sun Y et al (2021a) Comprehensive kinetic model for acetylene pretreated mesoporous silica supported bimetallic Co–Ni catalyst during Fischer–Tropsch synthesis. Chem Eng Sci 246:116828–116844

    CAS  Google Scholar 

  • Tachibana K et al (2010) Isolation and characterization of microorganisms degrading nylon 4 in the composted soil. Polym Degrad Stab 95(6):912–917

    CAS  Google Scholar 

  • Thomas S et al (2020) Thermal, mechanical and biodegradation studies of biofiller based poly-3-hydroxybutyrate biocomposites. Int J Biol Macromol 155:1373–1384

    CAS  PubMed  Google Scholar 

  • Tian L et al (2017) Mineralisation of C-14-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment. New Biotechnol 38:101–105

    CAS  Google Scholar 

  • Umamaheswari S, Margandan MM (2013) Micromorphological and chemical changes during biodegradation of polyethylene terephthalate (PET) by Penicillium sp. J Microbiol Biotechnol Res 3(4):47–53

    Google Scholar 

  • Urbanek AK et al (2020) Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. BiochimiBiophys Acta Proteins Proteomics. https://doi.org/10.1016/j.bbapap.2019.140315

    Article  PubMed  Google Scholar 

  • Vivi VK, Martins-Franchetti SM, Attili-Angelis D (2019) Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiol 64(1):1–7

    CAS  Google Scholar 

  • Wang Z et al (2020) A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum. Sci Tot Environ. https://doi.org/10.1016/j.scitotenv.2020.138564

    Article  Google Scholar 

  • Wang YS et al (2020) Optimization of dark fermentation for biohydrogen production using a hybrid artificial neural network (ANN) and response surface methodology (RSM) approach. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.13485

    Article  Google Scholar 

  • Wang YX et al (2021) Kinetic study of product distribution using various data-driven and statistical models for Fischer–Tropsch synthesis. ACS Omega 6:27183–27199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Tang M, Yusuf A, Wang Y, Zhang X, Yang G, He J, Jin H, Sun Y (2021) Preparation of catalyst from phosphorous rock using an improved wet process for transesterification reaction. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.1c01072

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang YX et al (2021a) Modeling biohydrogen production using different data driven approaches. Int J Hydrogen Energy 46(58):29822–29833

    CAS  Google Scholar 

  • Wang YS et al (2021b) Preparation of catalyst from phosphorous rock using an improved wet process for transesterification reaction. Ind Eng Chem Res 60(22):8094–8107

    CAS  Google Scholar 

  • Webb M (1951) The influence of magnesium on cell division. 6. The action of certain hydrolytic enzymes on the filamentous and chain forms of gram-positive rod-shaped organisms. J Gen Microbiol 5(3):496

    CAS  PubMed  Google Scholar 

  • Webb M (1951) The influence of magnesium on cell division. 5. The effect of magnesium on the growth of bacteria in chemically-defined media of varying complexity. J Gen Microbiolo 5(3):485

    CAS  Google Scholar 

  • Webb JS et al (2000) Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl Environ Microbiol 66(8):3194–3200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J et al (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48(23):13776–13784

    CAS  PubMed  Google Scholar 

  • Yang Y et al (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environ Sci Technol 49(20):12087–12093

    CAS  PubMed  Google Scholar 

  • Yates J et al (2021) A systematic scoping review of environmental, food security and health impacts of food system plastics. Nature Food 2(2):80–87

    Google Scholar 

  • Zahra S et al (2010) Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Manage 30(3):396–401

    CAS  Google Scholar 

  • Zheng L et al (2019) Roles of phosphorus sources in microbial community assembly for the removal of organic matters and ammonia in activated sludge. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01023

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou SP et al (2021) Efficient bio-degradation of food waste through improving the microbial community compositions by newly isolated Bacillus strains. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.124451

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by: Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province (2020E10018), National Key R&D Program of China (2018YFC1903500), FIG Grant from Faculty Inspiration Grant UNNC (2019FIG), Qianjiang Talent Scheme-(QJD1803014), Ningbo Science and Technology Innovation 2025 Key Project (2020Z100) and Ningbo Municipal Commonweal Key Program (2019C10033 & 2019C10104), UNNC FoSE New Researchers Grant 2020 (I01210100011). Li Dam Sum Fellowship of University of Nottingham Ningbo China (E06211200005). Authors would like to thank for the critical and insightful comments raised from anonymous reviewers that significantly improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YS: conceptualization, methodology, writing-original draft preparation, funding acquisition, JH: methodology, experiments, writing-original draft preparation, AY: writing-original draft preparation and revision, YW: data curation, computation and software, HJ: conceptualization, project management, supervision, writing- reviewing and editing, XZ: data curation, YL: conceptualization, methodology, YW: writing and editing, GY: proofreading, editing, JH: writing-reviewing and editing and project management.

Corresponding authors

Correspondence to Yong Sun, Huan Jin or Jun He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Hu, J., Yusuf, A. et al. A critical review on microbial degradation of petroleum-based plastics: quantitatively effects of chemical addition in cultivation media on biodegradation efficiency. Biodegradation 33, 1–16 (2022). https://doi.org/10.1007/s10532-021-09969-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-021-09969-4

Keywords

Navigation