Skip to main content
Log in

Preparation and performance evaluation of novel magnetic porous carriers in fluidized bed bioreactor for wastewater treatment

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Biofilm process is a promising wastewater treatment technology and biofilm carrier (biocarrier) is regarded as the core of this process. However, the traditional commercial biocarriers have their inherent drawbacks, therefore, the development of new-type biocarrier to enhance wastewater treatment efficiency is significantly important to biofilm-based reactors. In this study, based on radical suspension polymerization, a novel kind of magnetic porous carriers (PMCs) was prepared by modifying the porous polymer carriers (PPCs) with inorganic particles, and then applied in a fluidized bed bioreactor (FBBR) with a low packing ratio of 10 % (v/v) to synthetic wastewater treatment. The results showed that this novel biocarrier possesses paramagnetism with saturation magnetization of 1.01emu/g, low density (1.26 g/cm3), excellent hydrophilicity (surface water contact angle approaching zero) and rough surface. Besides, compared with the PPCs, the developed PMCs have larger pores (up to 50 μm or more), in which the larger-sized microbes are able to colonize. Moreover, as compared to the PPCs-based FBBR, the PMCs-based reactor achieved shorter time (7 days) for biofilm formaiton and significantly enhanced NH3-N removal efficiency ( nearly 20 % increase at the level of influent NH3-N concentration about 100 mg/L). High-throughput sequencing (HTS) results indicated that this new biocarrier could promote biodiversity and improve the abundance of Nitrosomonadales (the functional bacteria for ammonia removal in the bio-system), thus enhancing the ammonification process. Therefore, the developed PMCs could be preferable biocarriers for biofilm formation and provide an alternative to the traditional suspended biocarrier, demonstrating a promising potential, even at a lower filling ratio, to enhance the pollutants removal performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgements

We would like to acknowledge the financial support from the program of Ministry of Ecology and Environment, China (No. 2019-LHYJ-01-0204). We are also grateful to the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Q., Wang, G., Chen, M. et al. Preparation and performance evaluation of novel magnetic porous carriers in fluidized bed bioreactor for wastewater treatment. Biodegradation 32, 677–695 (2021). https://doi.org/10.1007/s10532-021-09960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-021-09960-z

Keywords

Navigation