Skip to main content

Efficiency of sulfamethoxazole removal from wastewater using aerobic granular sludge: influence of environmental factors

Abstract

The effects of adsorption, sulfamethoxazole (SMX) content, chemical oxygen demand (COD), and dissolved oxygen (DO) are recognized to be crucial for SMX removal in the aerobic granular sludge (AGS) system. Therefore, we investigated the impact of adsorption and these three different environmental factors on the SMX removal loading rate and removal efficiency of an AGS system, and determined the differences in microbial community composition under different environmental conditions. Adsorption was not the main SMX removal mechanism, as it only accounted for 5% of the total removal. The optimal SMX removal conditions were obtained for AGS when the COD, DO, and SMX concentrations were 600 mg/L, 8 mg/L, and 2,000 µg/L, respectively. The highest SMX removal efficiency was 93.53%. Variations in the three environmental factors promoted the diversity and changes of microbial communities in the AGS system. Flavobacterium, Thauera, and norank_f_Microscillaceae are key microorganisms in the AGS system. Thauera, and norank_f_Microscillaceae were sensitive to increases in SMX concentrations and beneficial for degrading high SMX concentrations. In particular, Flavobacterium abundances gradually decreased with increasing SMX concentrations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All data analyzed during this study are included in this published article or are available from the corresponding author on reasonable request.

References

  1. Amorim CL, Maia AS, Mesquita RB, Rangel AOSS, van Loosdrecht MCM, Tiritan ME, Castro PML (2014) Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin. Water Res 50:101–113. https://doi.org/10.1016/j.watres.2013.10.043

    CAS  Article  PubMed  Google Scholar 

  2. Antileo C, Roeckel M, Lindemann J, Wiesmann U (2007) Operating parameters for high nitrite accumulation during nitrification in a rotating biological nitrifying contactor. Water Environ Res 79:1006–1014. https://doi.org/10.2175/106143007X182755

    CAS  Article  PubMed  Google Scholar 

  3. APHA (2012) Standard methods for the examination of water and wastewater, twenty-second ed. Amer Public Health Ass, Washington, DC, USA

  4. Barros ARM, Argenta TS, de Carvalho CD, Oliveira FD, Firmino PIM, dos Santos AB (2021) Effects of the antibiotics trimethoprim (TMP) and sulfamethoxazole (SMX) on granulation, microbiology, and performance of aerobic granular sludge systems. Chemosphere 262:127840. https://doi.org/10.1016/j.chemosphere.2020.127840

    CAS  Article  Google Scholar 

  5. Cardete MA, Mata-Álvarez J, Dosta J, Nieto-Sánchez R (2017) Influence of hydraulic retention time, food-to-microorganism ratio and influent biodegradability on the performance of an aerobic selector treating petrochemical wastewater. J Environ Chem Eng 5:5033–5042. https://doi.org/10.1016/j.jece.2017.09.035

    CAS  Article  Google Scholar 

  6. Charuaud L, Jarde E, Jaffrezic A, Thomas MF, Le Bot B (2019) Veterinary pharmaceutical residues from natural water to tap water: sales, occurrence and fate. J Hazard Mater 361:169–186. https://doi.org/10.1016/j.jhazmat.2018.08.075

    CAS  Article  PubMed  Google Scholar 

  7. Chen K, Zhou JL (2014) Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere 95:604–612. https://doi.org/10.1016/j.chemosphere.2013.09.119

    CAS  Article  PubMed  Google Scholar 

  8. Chen Y, Jiang WJ, Liang DT, Tay JH (2008) Aerobic granulation under the combined hydraulic and loading selection pressures. Bioresour Technol 99:7444–7449. https://doi.org/10.1016/j.biortech.2008.02.028

    CAS  Article  PubMed  Google Scholar 

  9. Chen H, Li A, Wang Q, Cui D, Cui CW, Ma F (2018) Nitrogen removal performance and microbial community of an enhanced multistage A/O biofilm reactor treating low-strength domestic wastewater. Biodegradation 29:285–299. https://doi.org/10.1007/s10532-018-9829-x

    CAS  Article  PubMed  Google Scholar 

  10. Collado N, Buttiglieri G, Marti E, Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D, Comas J, Rodriguez-Roda I (2013) Effects on activated sludge bacterial community exposed to sulfamethoxazole. Chemosphere 93:99–106. https://doi.org/10.1016/j.chemosphere.2013.04.094

    CAS  Article  PubMed  Google Scholar 

  11. Domaradzka D, Guzik U, Wojcieszyńska D (2015) Biodegradation and biotransformation of polycyclic non-steroidal anti-inflammatory drugs. Rev Environ Sci Biotechnol 14:229–239. https://doi.org/10.1007/s11157-015-9364-8

    CAS  Article  Google Scholar 

  12. Drillia P, Dokianakis SN, Fountoulakis MS, Kornaros M, Stamatelatou K, Lyberatos G (2005) On the occasional biodegradation of pharmaceuticals in the activated sludge process: the example of the antibiotic sulfamethoxazole. J Hazard Mater 122:259–265. https://doi.org/10.1016/j.jhazmat.2005.03.009

    CAS  Article  PubMed  Google Scholar 

  13. Du BB, Yang QX, Li XN, Yuan W, Chen YL, Wang RF (2019) Impacts of long-term exposure to tetracycline and sulfamethoxazole on the sludge granules in an anoxic-aerobic wastewater treatment system. Sci Total Environ 684:67–77. https://doi.org/10.1016/j.scitotenv.2019.05.313

    CAS  Article  PubMed  Google Scholar 

  14. Fischer K, Majewsky M (2014) Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms. Appl Microbiol Biotechnol 98(15):6583–6597. https://doi.org/10.1007/s00253-014-5826-0

    CAS  Article  PubMed  Google Scholar 

  15. Fra-Vázquez A, Morales N, Figueroa M (2016) Bacterial community dynamics in long-term operation of a pilot plant using aerobic granular sludge to treat pig slurry. Biotechnol Prog 32:1212–1221. https://doi.org/10.1002/btpr.2314

    CAS  Article  PubMed  Google Scholar 

  16. Gao P, Ding YJ, Li H, Xagoraraki I (2012) Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes. Chemosphere 88:17–24. https://doi.org/10.1016/j.chemosphere.2012.02.017

    CAS  Article  PubMed  Google Scholar 

  17. Gao FZ, Zou HY, Wu DL (2020) Swine farming elevated the proliferation of Acinetobacter with the prevalence of antibiotic resistance genes in the groundwater. Environ Int 136:105484. https://doi.org/10.1016/j.envint.2020.105484

    Article  PubMed  Google Scholar 

  18. Grandclement C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P (2017) From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res 111:297–317. https://doi.org/10.1016/j.watres.2017.01.005

    CAS  Article  PubMed  Google Scholar 

  19. Hayashi M, Ishibashi T, Maoka T (2018) Effect of astaxanthin-rich extract derived from Paracoccus carotinifaciens on cognitive function in middle-aged and older individuals. J Clin Biochem Nutr 62:195–205. https://doi.org/10.3164/jcbn.17-100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. He JG, Xu J, Yu HR (2021) Performance and bacterial community dynamics of aerobic granular sludge working at low temperature enhanced by melamine framework embedding. J Environ Chem Eng 9:105156. https://doi.org/10.1016/j.jece.2021.105156

    CAS  Article  Google Scholar 

  21. Islas-Espinoza M, Reid BJ, Wexler M, Bond PL (2012) Soil bacterial consortia and previous exposure enhance the biodegradation of sulfonamides from pig manure. Microb Ecol 64:140–151. https://doi.org/10.1007/s00248-012-0010-5

    CAS  Article  PubMed  Google Scholar 

  22. Jia SY, Zhang XX, Miao Y, Zhao YT, Ye L, Li B, Zhang T (2017) Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water. Water Res 124:259–268. https://doi.org/10.1016/j.watres.2017.07.061

    CAS  Article  PubMed  Google Scholar 

  23. Kang AJ, Brown AK, Wong CS, Huang ZY, Yuan QY (2018) Variation in bacterial community structure of aerobic granular and suspended activated sludge in the presence of the antibiotic sulfamethoxazole. Bioresour Technol 261:322–328. https://doi.org/10.1016/j.biortech.2018.04.054

    CAS  Article  PubMed  Google Scholar 

  24. Lee RB, Sarafin K, Peart TE, Svoboda ML (2003) Acidic pharmaceuticals in sewage-methodology, stability test, occurrence, and removal from Ontario samples. Water Qual Res J Can 38:667–682. https://doi.org/10.2166/wqrj.2003.042

    CAS  Article  Google Scholar 

  25. Li Y, Liu Y (2005) Diffusion of substrate and oxygen in aerobic granules. Biochem Eng J 27:45–52. https://doi.org/10.1016/j.bej.2005.06.012

    CAS  Article  Google Scholar 

  26. Li XY, Yang SF (2007) Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res 41:1022–1030. https://doi.org/10.1016/j.watres.2006.06.037

    CAS  Article  PubMed  Google Scholar 

  27. Li B, Zhang T (2010) Biodegradation and adsorption of antibiotics in the activated sludge process. Environ Sci Technol 44:3468–3473. https://doi.org/10.1021/es903490h

    CAS  Article  PubMed  Google Scholar 

  28. Li AJ, Yang SF, Li XY, Gu JD (2008) Microbial population dynamics during aerobic sludge granulation at different organic loading rates. Water Res 42:3552–3560. https://doi.org/10.1016/j.watres.2008.05.005

    CAS  Article  PubMed  Google Scholar 

  29. Li Y, Rashid A, Wang H et al (2018) Contribution of biotic and abiotic factors in the natural attenuation of sulfamethoxazole: a path analysis approach. Sci Total Environ 633:1217–1226. https://doi.org/10.1016/j.scitotenv.2018.03.232

    CAS  Article  PubMed  Google Scholar 

  30. Li H, Cai Y, Gu ZL et al (2020) Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater. Chemosphere 248:126014. https://doi.org/10.1016/j.chemosphere.2020.126014

    CAS  Article  PubMed  Google Scholar 

  31. Liao XB, Li BX, Zou RS, Xie SG, Yuan BL (2016) Antibiotic sulfanilamide biodegradation by acclimated microbial populations. Appl Microbiol Biotechnol 100:2439–2447. https://doi.org/10.1007/s00253-015-7133-9

    CAS  Article  PubMed  Google Scholar 

  32. Liu YQ, Liu Y, Tay JH (2004) The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbial Biotechnol 5:143–148. https://doi.org/10.1007/s00253-004-1657-8

    CAS  Article  Google Scholar 

  33. Liu YQ, Tay JH, Moy BYP (2006) Characteristics of aerobic granular sludge in a sequencing batch reactor with variable aeration. Appl Microbiol Biotechnol 71:761–766. https://doi.org/10.1007/s00253-005-0209-1

    CAS  Article  PubMed  Google Scholar 

  34. Liu L, Gibson V, Huang X, Liu CX, Zhu GF (2016) Effects of antibiotics on characteristics and microbial resistance of aerobic granules in sequencing batch reactors. Desalin Water Treat 57:8252–8261. https://doi.org/10.1080/19443994.2015.1024746

    CAS  Article  Google Scholar 

  35. Liu L, You QY, Fan HY, Huang X, Wei LL, Liu CX (2019) Behavior of antibiotics and antibiotic resistance genes in aerobic granular reactors: interrelation with biomass concentration. Int Biodeterior Biodegrad 139:18–23. https://doi.org/10.1016/j.ibiod.2019.02.004

    CAS  Article  Google Scholar 

  36. Ma F, Sun Y, Li A et al (2015) Activation of accumulated nitrite reduction by immobilized Pseudomonas stutzeri T13 during aerobic denitrification. Bioresour Technol 187:30–36. https://doi.org/10.1016/j.biortech.2015.03.060

    CAS  Article  PubMed  Google Scholar 

  37. Miran W, Jang J, Nawaz M et al (2018) Biodegradation of the sulfonamide antibiotic sulfamethoxazole by sulfamethoxazole acclimatized cultures in microbial fuel cells. Sci Total Environ 627:1058–1065. https://doi.org/10.1016/j.scitotenv.2018.01.326

    CAS  Article  PubMed  Google Scholar 

  38. Moy BYP, Tay JH, Toh SK, Liu Y, Tay STL (2002) High organic loading influences the physical characteristics of aerobic sludge granules. Lett Appl Microbiol 34:407–412. https://doi.org/10.1046/j.1472-765X.2002.01108.x

    Article  PubMed  Google Scholar 

  39. Müller E, Schüssler W, Horn H, Lemmer H (2013) Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source. Chemosphere 92:969–978. https://doi.org/10.1016/j.chemosphere.2013.02.070

    CAS  Article  PubMed  Google Scholar 

  40. Ni BJ, Yu HQ, Sun YJ (2008) Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules. Water Res 42:1583–1594. https://doi.org/10.1016/j.watres.2007.11.010

    CAS  Article  PubMed  Google Scholar 

  41. Ogura S, Hamza RA, Tay JH (2020) Dried aerobic granules for fast startup of aerobic granular sludge reactors: reactivation and performance. Water Process Eng 36:101298. https://doi.org/10.1016/j.jwpe.2020.101298

    Article  Google Scholar 

  42. Qiu LQ, Zhang L, Tang K, Chen GH, Kumar SK, Lu H (2019) Removal of sulfamethoxazole (SMX) in sulfate-reducing flocculent and granular sludge systems. Bioresour Technol 288:121592. https://doi.org/10.1016/j.biortech.2019.121592

    CAS  Article  PubMed  Google Scholar 

  43. Robertson L (1983) Thiosphaera pamtotropha gen, nov. sp. nov. A facultatively anaerobic, facultatively autotrophic sulphur bacterium. J Gen Microbiol 129:2847–2855. https://doi.org/10.1099/00221287-129-9-2848

    CAS  Article  Google Scholar 

  44. Suarez S, Lema JM, Omil F (2010) Removal of Pharmaceutical and Personal Care Products (PPCPs) under nitrifying and denitrifying conditions. Water Res 44:3214–3224. https://doi.org/10.1016/j.watres.2010.02.040

    CAS  Article  PubMed  Google Scholar 

  45. Tice H, Mayilraj S, Sims D et al (2010) Complete genome sequence of Nakamurella multipartita type strain (Y-104T). Stand Genomic Sci 2:168–175. https://doi.org/10.4056/sigs.721316

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wan JF, Bessière Y, Spérandio M (2009) Alternating anoxic feast/aerobic famine condition for improving granular sludge formation in sequencing batch airlift reactor at reduced aeration rate. Water Res 43:5097–5108. https://doi.org/10.1016/j.watres.2009.08.045

    CAS  Article  PubMed  Google Scholar 

  47. Wan XP, Gao MM, Ye MS, Wang YK, Xu H, Wang XH (2018) Formation, characteristics and microbial community of aerobic granular sludge in the presence of sulfadiazine at environmentally relevant concentrations. Bioresour Technol 250:486–494. https://doi.org/10.1016/j.biortech.2017.11.071

    CAS  Article  PubMed  Google Scholar 

  48. Wang F, Lu S, Wei Y, Ji M (2009) Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR. J Hazard Mater 164:1223–1227. https://doi.org/10.1016/j.jhazmat.2008.09.034

    CAS  Article  PubMed  Google Scholar 

  49. Wang J, Li Q, Qi R et al (2014) Sludge bulking impact on relevant bacterial populations in a full-scale municipal wastewater treatment plant. Process Biochem 49:2258–2265. https://doi.org/10.1016/j.procbio.2014.08.005

    CAS  Article  Google Scholar 

  50. Wang YH, Liu JZ, Kang D, Wu CX, Wu YH (2017) Removal of pharmaceuticals and personal care products from wastewater using algae-based technologies: a review. Rev Environ Sci Bio/technol 2:1–19. https://doi.org/10.1007/s11157-017-9446-x

    Article  Google Scholar 

  51. Wilén BM, Liébana R, Persson F, Modin O (2018) The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent quality. Appl Microbiol Biotechnol 102:5005–5020. https://doi.org/10.1007/s00253-018-8990-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Wu XW, Huang J, Lu ZC, Chen GF, Wang JM (2019) Thiothrix eikelboomii interferes oxygen transfer in activated sludge. Water Res 151:134–143. https://doi.org/10.1016/j.watres.2018.12.019

    CAS  Article  PubMed  Google Scholar 

  53. Xie BH, Tang XB, Ng HY et al (2020) Biological sulfamethoxazole degradation along with anaerobically digested centrate treatment by immobilized microalgal-bacterial consortium: performance, mechanism and shifts in bacterial and microalgal communities. Chem Eng J 388:124217. https://doi.org/10.1016/j.cej.2020.124217

    CAS  Article  Google Scholar 

  54. Yang C, Zhang W, Liu RH et al (2011a) Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants. Environ Sci Technol 45:7408–7415. https://doi.org/10.1021/es2010545

    CAS  Article  PubMed  Google Scholar 

  55. Yang SF, Lin CF, Lin AYC, Hong PKA (2011b) Sorption and biodegradation of sulfonamide antibiotics by activated sludge: experimental assessment using batch data obtained under aerobic conditions. Water Res 45:3389–3397. https://doi.org/10.1016/j.watres.2011.03.052

    CAS  Article  PubMed  Google Scholar 

  56. Yao YY, Xu RH, Zhou ZB, Meng FG (2021) Linking dynamics in morphology, components, and microbial communities of biocakes to fouling evolution: a comparative study of anaerobic and aerobic membrane bioreactors. Chem Eng J 413:127483. https://doi.org/10.1016/j.cej.2020.127483

    CAS  Article  Google Scholar 

  57. Yuan XJ, Gao DW (2010) Effect of dissolved oxygen on nitrogen removal and process control in aerobic granular sludge reactor. J Hazard Mater 178:1041–1045. https://doi.org/10.1016/j.jhazmat.2010.02.045

    CAS  Article  PubMed  Google Scholar 

  58. Zhang LL, Feng XX, Zhu NW, Chen JM (2007) Role of extracellular protein in the formation and stability of aerobic granules. Enzyme Microb Technol 41:551–557. https://doi.org/10.1016/j.enzmictec.2007.05.001

    CAS  Article  Google Scholar 

  59. Zhao YG, Huang J, Zhao H, Yang H (2013) Microbial community and N removal of aerobic granular sludge at high COD and N loading rates. Bioresour Technol 143:439–446. https://doi.org/10.1016/j.biortech.2013.06.020

    CAS  Article  PubMed  Google Scholar 

  60. Zhao X, Wang XC, Chen ZL, Xu H, Zhang QF (2015) Microbial community structure and pharmaceuticals and personal care products removal in a membrane bioreactor seeded with aerobic granular sludge. Appl Microbiol Biotechnol 99:425–433. https://doi.org/10.1007/s00253-014-5984-0

    CAS  Article  Google Scholar 

  61. Ziembinska A, Ciesielski S, Miksch K (2009) Ammonia oxidizing bacteria community in activated sludge monitored by denaturing gradient gel electrophoresis (DGGE). J Gen Appl Microbiol 55:373–380. https://doi.org/10.2323/jgam.55.373

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51608154), Postdoctoral Research Fund of Heilongjiang Province, China (LBH-Z20163), Young Innovative Talents Support Program of Harbin University of Commerce, China (2020CX29), Foundation for Distinguished Young Talents of Harbin University of Commerce, China (18XN026), Joint Guidance Project of Natural Science Foundation of Heilongjiang Province (LH2021E091), Independent Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, China (2020DX06), Top Peak discipline Innovation Team Project of Harbin University of Commerce, China.

Author information

Affiliations

Authors

Contributions

DC and WLL conceived of the study. ZYC, XMC, HND and GCZ conducted the experiments, collected and analyzed data. YS and DC wrote the manuscript with input from all authors. All authors agreed the results of this manuscript.

Corresponding authors

Correspondence to Di Cui or Wenlan Li.

Ethics declarations

Conflict of interest

The authors declare no actual or potential competing financial interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

The authors consent to publication of this work. All authors agree to submit the manuscript to Biodegradation for potential publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1569 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, D., Chen, Z., Cheng, X. et al. Efficiency of sulfamethoxazole removal from wastewater using aerobic granular sludge: influence of environmental factors. Biodegradation 32, 663–676 (2021). https://doi.org/10.1007/s10532-021-09959-6

Download citation

Keywords

  • Aerobic granular sludge
  • Sulfamethoxazole
  • Environmental factor
  • Microbial community structure