Skip to main content

Aerobic degradation of 2,4,6-trinitrophenol by Proteus sp. strain OSES2 obtained from an explosive contaminated tropical soil

Abstract

A 2,4,6-trinitrophenol (TNP) degrading bacterial strain isolated from a site polluted with explosives was identified as Proteus sp. strain OSES2 via 16S rRNA gene sequencing. Metabolic investigation showed that the organism grew exponentially on 100 mg l−1 of TNP as a source of carbon, nitrogen, and energy. In addition, the growth of the organism was sustainable on 3-nitrotoluene, 2,4-dinitrotoluene, 2,4,6-trinitrotoluene, 4-nitrophenol, methyl-3-nitrobenzoate, 4-nitroaniline, aniline and nitrobenzene. Strain OSES2 was able to utilize TNP within a concentration range of 100 mg l−1 to 500 mg l−1. The specific growth rate and degradation rates on TNP were 0.01043 h−1 and 0.01766 mg l−1 h−1 respectively. Effective degradation of TNP in a chemically defined medium was evident with a gradual reduction in the concentration of TNP concomitant with an increase in cell density as well as the substantial release of ammonium (NH4+), nitrite (NO2), and nitrate (NO3) as metabolites in 96 h. Degradation competence of the organism was enhanced in the presence of starch and acetate. On starch-supplemented TNP, the highest specific growth rate and degradation rates were 0.02634 h−1 and 0.04458 mg l−1 h−1, respectively, while the corresponding values on acetate were 0.02341 h−1 and 0.02811 mg l−1 h−1. However, amendment with nitrogen sources yielded no substantial improvement in degradation. TNP was utilized optimally at pH 7 to 9 and within the temperature range of 30 °C to 37 °C. The enzyme hydride transferase II [HTII], encoded by the npdI gene which is the first step involved in the TNP degradation pathway, was readily expressed by the isolate thus suggesting that substrate was utilized through the classical metabolic pathway.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

source of carbon and energy. No growth was detected in heat-inactivated cells or uninoculated and/or non-supplemented control flasks. Data presented are means and ± standard deviations of three replicate determinations

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Adebusoye SA (2017) Biological degradation of 4-chlorobenzoic acid by a PCB-metabolizing bacteria through a pathway not involving (chloro) catechol. Biodegradation 28:37–51

    CAS  PubMed  Article  Google Scholar 

  2. Adebusoye SA, Marzia M (2011) Characterization of multiple chlorobenzoic acid-degrading bacteria from pristine and contaminated sites: metabolism of 2,4-diCBA. Bioresour Technol 102:3041–3048

    CAS  PubMed  Article  Google Scholar 

  3. Adebusoye SA, Picardal FW, Ilori MO, Amund OO, Fuqua C, Grindle N (2007) Growth on dichlorobiphenyls with chlorine substitution on each ring by bacteria isolated from contaminated African soils. Appl Microbiol Biotechnol 74(2):484-492

    CAS  PubMed  Article  Google Scholar 

  4. Adebusoye SA, Picardal FW, Ilori MO, Faqua AOO, C, (2008) Characterization of multiple novel aerobic polychlorinated biphenyl (PCB)- utilizing bacterial strains indigenous to contaminated tropical African soils. Biodegradation 19:145–159

    CAS  PubMed  Article  Google Scholar 

  5. AOAC (2003) Official methods of analysis, 10th edn. Association of Official Analytical Chemists, Washington

    Google Scholar 

  6. APHA (1998) Standard methods for examination of water and wastewater, 20th edn. American Public Health Association, American water works Association and water pollution control federation, Washington

    Google Scholar 

  7. Baljinder S, Jagdeep K, Kashmir S (2011) 2,4,6-Trinitrophenol degradation by Bacillus cereus isolated from a firing range. Biotechnol Lett 33:2411–2415

    Article  CAS  Google Scholar 

  8. Behrend C, Heesche-Wanger K (1999) Formation of Hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22–2. Appl Environ Microbiol 65:1372–1377

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Belyaeva EA, Sokolova TV, Emelyanova LV, Zaskharova IO (2012) Mitochondrial electron transport chain in heavy metal-induced neurotoxicity: effects of cadmium, mercury, and copper. Sci World J 2012:136–163

    Article  CAS  Google Scholar 

  10. Boldrin B, Tiehm A, Fritzsche C (1993) Degradation of phenanthrene, fluorene, fluoranthene and pyrene by a Mycobacterium sp. Appl Environ Microbiol 59(6):1927–1930

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. BS 1377 (1990) Methods of test for soil for civil engineering purposes. British Standards Institute, London, p 36

    Google Scholar 

  12. Claus H (2014) Microbial degradation of 2,4,6-trinitrotoluene in vitro and in natural environments. In: Singh SN (ed) Biological remediation of explosive residues. Environmental science and engineering. Springer, New York, pp 15–38

    Chapter  Google Scholar 

  13. Clausen CA (2000) Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood. Waste Manag Res 18:264–268

    CAS  Article  Google Scholar 

  14. Debasree K, Chinmay H, Ambalal C (2015) Islation, screening and assessment of microbial isolates for biodegradation of 2,4- and 2,6-dinitrotoluene. Int J Curr Microbiol Appl Sci 4(1):564–574

    Google Scholar 

  15. Dewis J, Freitas F (1970) Physical and chemical methods of soil and water analysis. Soil Bulletin F.A.O, Rome, p 275

    Google Scholar 

  16. Erikson D (1941) Studies on some lake-mud strains of Micromonaspora. J Bacteriol 41:277–300

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Friedlová M (2010) The influence of heavy metals on soil biological and chemical properties. Soil Water Res 5(1):21–27

    Article  Google Scholar 

  18. Fuller ME, Hatzinger PB, Rungmakol D, Schuster RL, Steffan RJ (2004) Enhancing the attenuation of explosives in surface soils at military facilities: combined sorption and biodegradation. Environ Toxicol Chem 23(2):313–324

    CAS  PubMed  Article  Google Scholar 

  19. Gundersen K, Jensen HJ (1956) A soil bacterium decomposing organic nitro compounds. Acta Agric Scand 6:100–114

    CAS  Article  Google Scholar 

  20. Hao OJ, Kim MH, Seagren EA, Kim H (2002) Kinetics of phenol and chlorophenol utilization by Acinetobacter sp. Chemosphere 46(6):797–807

    CAS  PubMed  Article  Google Scholar 

  21. He L, Collins AG (1999) Trinitrophenol transformation by Enterobacter taylorae. Environ Eng Sci 16(1):57–65

    Article  Google Scholar 

  22. Heiss G, Knackmuss HJ (1992) Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24–2. Appl Environ Microbiol 58:2933–2937

    Article  Google Scholar 

  23. Heiss G, Knackmuss HJ (2002) Bioelimination of trinitroaromatic compounds: immobilization versus mineralization. Curr Opin Microbiol 5:282–287

    CAS  PubMed  Article  Google Scholar 

  24. Heiss G, Hofmann KW, Trachtmann N, Walters DM, Rouvie P,˙ Knackmuss HJ, (2002) Npd gene functions of Rhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation. Microbiology 148:799–806

    CAS  PubMed  Article  Google Scholar 

  25. Hofmann KW, Knackmuss HJ, Heiss G (2004) Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation. Appl Environ Microbiol 70:2854–2860

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Igiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2018:1–16

    Article  CAS  Google Scholar 

  27. Ju KS, Parales RE (2010) Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev 74(2):250–272

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Kalafut T, Wales ME, Rastogi VK, Naumova RP, Zaripova SK, Wild JR (1998) Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria. Curr Microbiol 36:45–54

    CAS  PubMed  Article  Google Scholar 

  29. Kanissery RG, Sims GK (2011) Biostimulation for the enhanced degradation of herbicides in soil. Appl Environ Soil Sci 2011:10. https://doi.org/10.1155/2011/843450

    CAS  Article  Google Scholar 

  30. Kao C-M, Lin B-H, Chen S-C, Wei S-F, Chen C-C, Yao C-L, Chien C-C (2016) Biodegradation of trinitrotoluene (TNT) by indigenous microorganisms from TNT-contaminated soil, and their application in TNT bioremediation. Bioremediat J 20(3):165–173

    CAS  Article  Google Scholar 

  31. Kastner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 41:267–273

    Article  Google Scholar 

  32. Kim HY, Bennett GN, Song HG (2003) Degradation of 2,4,6-trinitrotoluene by Klebsiella sp. isolated from activated sludge. Biotechnol Lett 24:2023–2028

    Article  Google Scholar 

  33. Krooneman J, Wieringa EBA, Moore ERB, Gerritse J, Prins RA, Gottschal JC (1996) Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro)- catechols. Appl Environ Microbiol 62:2427–2434

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Kulkarni M (2005) Bioremediation of nitroaromatic compounds (p-nitrophenol). Dissertation, North Maharashtra University, Jalgaon, India

  35. Labana S, Singh OV, Basu A, Pandey G, Jain RK (2005) A microcosm study on bioremediation of p-nitrophenol-contaminated soil using Arthrobacter protophormiae RKJ100. Environ Biotechnol 68:417–424

    CAS  Article  Google Scholar 

  36. Lin C-W, Cheng Y-W, Tsai S-L (2007) Influences of metals on kinetics of methyl tert-butyl ether biodegradation by Ochrobactrum cytisi. Chemosphere 69:1485–1491

    CAS  PubMed  Article  Google Scholar 

  37. Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    CAS  Article  Google Scholar 

  38. McLay RB, Nguyen HN, Jaimes-Lizcano YA, Dewangan NK, Alexandrova S, Rodrigues DF, Cirino PC, Conrad JC (2017) Level of Fimbriation Alters the Adhesion of Escherichia coli Bacteria to Interfaces. Langmuir 34(3):1133–1142

    PubMed  Article  CAS  Google Scholar 

  39. Muter O, Potapova K, Limane B, Sproge K, Jakobsone I, Cepurnieks Bartkevics V (2012) The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil. J Environ Manag 98:51–55

    CAS  Article  Google Scholar 

  40. Nefso EK, Burns SE, McGrath CJ (2005) Degradation kinetics of TNT in the presence of six mineral surfaces and ferrous iron. J Hazard Mater 123:79–88

    CAS  PubMed  Article  Google Scholar 

  41. Nga DP, Altenbuchner J, Heiss GS (2004) NpdR, a repressor involved in 2,4,6-trinitrophenol degradation in Rhodococcus opacus HL PM-1. J Bacteriol 186:98–103

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Nipper M, Qian Y, Carr RS, Miller K (2004) Degradation of picric acid and 2,6-DNT in marine sediments and waters: the role of microbial activity and ultra-violet exposure. Chemosphere 56:519–530

    CAS  PubMed  Article  Google Scholar 

  43. Nipper M, Carr RS, Biedenbach JM, Hooten RL, Miller K (2005) Fate and effects of picric acid and 2,6-DNT in marine environments: toxicity of degradation products. Mar Pollut Bull 50:1205–1217

    CAS  PubMed  Article  Google Scholar 

  44. Nur C (2012) Biodegradation of pyrene by a newly isolated Proteus vulgaris. Sci Res Essays 7(1):66–77

    Google Scholar 

  45. Obayori OS, Salam LB, Oyetibo GO, Idowua M, Amund OO (2017) Biodegradation potentials of polyaromatic hydrocarbon (pyrene and phenanthrene) by Proteus mirabilis isolated from an animal charcoal polluted site. Biocatal Agric Biotechnol 12:78–84

    Article  Google Scholar 

  46. PastiGrigsby MB, Lewis TA, Crawford DL, Crawford RL (1996) Transformation of 2,4,6-trinitrotoluene (TNT) by actinomycetes isolated from TNT-contaminated and uncontaminated environments. Appl Environ Microbiol 62(3):1120–1123

    CAS  Article  Google Scholar 

  47. Puyuelo B, Ponsá S, Gea T, Sánchez A (2011) Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere 85(4):653–659

    CAS  PubMed  Article  Google Scholar 

  48. Qureshi A, Purohit HJ (2002) Isolation of bacterial consortia for degradation of p-nitrophenol from agricultural soil. Ann Appl Biol 140:159–162

    CAS  Article  Google Scholar 

  49. Qureshi A, Verma V, Kapley A, Purohit HJ (2007) Degradation of 4-nitroaniline by Stenotrophomonas strain HPC 135. Int Biodeter and Biodegr 60:215–218

    CAS  Article  Google Scholar 

  50. Qureshi A, Kapley A, Hemant JP (2012) Degradation of 2,4,6-Trinitrophenol (TNP) by Arthrobacter sp. HPC1223 Isolated from Effluent Treatment Plant. Indian J Microbiol 52(4):642–647

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Rajan J, Valli K, Perkins RE, Sariaslani FS, Barns SM, Reysenbach V, Rehm S, Ehringer M, Pace NR (1996) Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strain. J Ind Microbiol 16:319–324

    CAS  PubMed  Article  Google Scholar 

  52. Ramos JL, Gonzalez-Perez MM, Caballero A, van Dillewijn P (2005) Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr Opin Biotechnol 16:275–281

    CAS  PubMed  Article  Google Scholar 

  53. Rieger PG, Sinnwell V, Preuss A, Francke W, Knackmuss HJ (1999) Hydride Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. J Bacteriol 181:1189–2119

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Rodrigues DF, Sakata S, Comasseto J, Bícego M, Pellizari V (2009) Diversity of hydrocarbon-degrading Klebsiella strains isolated from hydrocarbon-contaminated estuaries. J Appl Microbiol 106(4):1304–1314

    CAS  PubMed  Article  Google Scholar 

  55. Salam LB, Ilori MO, Amund OO (2014) Carbazole angular dioxygenation and mineralization by bacteria isolated from hydrocarbon-contaminated tropical African soil. Environ Sci Pollut Res 21:9311–9324

    CAS  Article  Google Scholar 

  56. Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Perspect 111:1093–1101

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Shen J, Zhang J, Zuo Y, Wang L, Sun X, Li J, Han W, He R (2009) Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from picric acid-contaminated soil. J Hazard Mater 163:1199–1206

    CAS  PubMed  Article  Google Scholar 

  58. Singh S, Lal S, Harjit J, Amlathe S, Kataria HC (2011) Potential of metal extractions in determination of trace metals in water sample. Adv Stud Biol 3(5):239–246

    CAS  Google Scholar 

  59. Su XM, Bamba AM, Zhang S, Zhang YG, Hashmi MZ, Lin HJ et al (2018) Revealing potential functions of VBNC bacteria in polycyclic aromatic hydrocarbons biodegradation. Lett Appl Microbiol 66:277–283

    CAS  PubMed  Article  Google Scholar 

  60. Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73:1163–1172

    CAS  Article  Google Scholar 

  61. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacteria taxonomy. Appl Environ Microbiol 73(16):5261–5267

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Watanabe M, Ishidate M, Nohmi T (1990) Nucleotide sequence of Salmonella typhimurium nitroreductase gene. Nucleic Acids Res 18:10–59

    Google Scholar 

  63. Zhang MH, Zhao QL, Ye ZF (2011) Organic pollutants removal from 2,4,6-trinitrotoluene (TNT) red water using low cost activated coke. J Environ Sci 23:1962–1969

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by Welch Foundation Award Number (E-2011-20190330) and Biological and Environmental Research Science Focus Area Grant: U.S. Department of Energy (Grant no. DE-AC52-06NA25396) as well as University of Lagos Central Research Committee Research Grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sunday A. Adebusoye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Okozide, O.E., Adebusoye, S.A., Obayori, O.S. et al. Aerobic degradation of 2,4,6-trinitrophenol by Proteus sp. strain OSES2 obtained from an explosive contaminated tropical soil. Biodegradation 32, 643–662 (2021). https://doi.org/10.1007/s10532-021-09958-7

Download citation

Keywords

  • 2,4,6-Trinitrophenol
  • Gene expression
  • Nitroaromatic compounds
  • Biodegradation
  • Enrichment