Skip to main content

Using a sulfur autotrophic fluidized bed reactor for simultaneous perchlorate and nitrate removal from water: S disproportionation prediction and system optimization

Abstract

The sulfur autotrophic reduction (SAR) process is promising in co-reduction of perchlorate and nitrate from aqueous solution. To further understand the reaction process, we developed a sulfur autotrophic fluidized bed reactor where the proceeding extent of sulfur (S) disproportionation was predicted by Response surface methodology (RSM) for the first time. Three fundamental reaction parameters including the hydraulic retention time (HRT), co-existing nitrate concentration (\({C}_{\mathrm{inf }{NO}_{3}^{-}-N}\)) and recirculation ratio (R) were considered for reactor optimization. The results demonstrated that S disproportionation was promoted by long HRT and high R, whereas was inhibited by high \({C}_{\mathrm{inf }{NO}_{3}^{-}-N}\). Also, the optimal HRT, \({C}_{\mathrm{inf }{NO}_{3}^{-}-N}\) and R were 0.50 h, 10.00 mg/L and 14, respectively, the bioreactor can achieve high reduction efficiency of perchlorate and nitrate (> 98.45%), and generate less sulfate (236.07 mg/L). High-throughput sequencing showed that Chlorobaculum was related to S disproportionation, and Sulfurovum was associated with nitrate/perchlorate reducing. All results indicate that the sulfur autotrophic fluidized bed reactor is a promising candidate for the treatment of perchlorate and nitrate wastewater in future practical applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bardiya N, Bae JH (2011) Dissimilatory perchlorate reduction: a review. Microbiol Res 166(4):237–254. https://doi.org/10.1016/j.micres.2010.11.005

    CAS  Article  PubMed  Google Scholar 

  2. Boles AR, Conneely T, McKeever R, Nixon P, Nusslein KR, Ergas SJ (2012) Performance of a pilot-scale packed bed reactor for perchlorate reduction using a sulfur oxidizing bacterial consortium. Biotechnol Bioeng 109(3):637–646. https://doi.org/10.1002/bit.24354

    CAS  Article  PubMed  Google Scholar 

  3. China EPA (2009) Water and wastewater monitoring and analysis methods, fourth. China Environmental Science Press, Beijing

    Google Scholar 

  4. Di Capua F, Pirozzi F, Lens PNL, Esposito G (2019) Electron donors for autotrophic denitrification. Chem Eng J 362:922–937. https://doi.org/10.1016/j.cej.2019.01.069

    CAS  Article  Google Scholar 

  5. Eggers E, Terlouw T (1979) Biological denitrification in a fluidized bed with sand as carrier material. Water Res 13(11):1077–1090. https://doi.org/10.1016/0043-1354(79)90072-1

    CAS  Article  Google Scholar 

  6. Gao MC, Wang S, Ren Y, Jin CJ, She ZL, Zhao YG, Yang SY, Guo L, Zhang J, Li ZW (2016) Simultaneous removal of perchlorate and nitrate in a combined reactor of sulfur autotrophy and electrochemical hydrogen autotrophy. Chem Eng J 284:1008–1016. https://doi.org/10.1016/j.cej.2015.09.082

    CAS  Article  Google Scholar 

  7. Ghafari S, Hasan M, Aroua MK (2008) Bio-electrochemical removal of nitrate from water and wastewater-a review. Bioresour Technol 99(10):3965–3974. https://doi.org/10.1016/j.biortech.2007.05.026

    CAS  Article  PubMed  Google Scholar 

  8. Green M, Schnitzer M, Tarre S (1995) Kinetics of a fluidized-bed reactor for ground-water denitrification. Appl Microbiol Biotechnol 43(1):188–193. https://doi.org/10.1007/BF00170642

    CAS  Article  Google Scholar 

  9. Guo J, Zhang C, Lian J, Lu C, Chen Z, Song Y, Guo Y, Xing Y (2017) Effect of thiosulfate on rapid start-up of sulfur-based reduction of high concentrated perchlorate: a study of kinetics, extracellular polymeric substances (EPS) and bacterial community structure. Bioresour Technol 243:932–940. https://doi.org/10.1016/j.biortech.2017.07.045

    CAS  Article  PubMed  Google Scholar 

  10. Hanson TE, Bonsu E, Tuerk A, Marnocha CL, Powell DH, Chan CS (2016) Chlorobaculum tepidum growth on biogenic S(0) as the sole photosynthetic electron donor. Environ Microbiol 18(9):2856–2867. https://doi.org/10.1111/1462-2920.12995

    CAS  Article  PubMed  Google Scholar 

  11. Jiang C, Yang Q, Wang D, Zhong Y, Chen F, Li X, Zeng G, Li X, Shang M (2017) Simultaneous perchlorate and nitrate removal coupled with electricity generation in autotrophic denitrifying biocathode microbial fuel cell. Chem Eng J 308:783–790. https://doi.org/10.1016/j.cej.2016.09.121

    CAS  Article  Google Scholar 

  12. Koenig A, Liu LH (2001) Kinetic model of autotrophic denitrification in sulphur packed-bed reactors. Water Res 35(8):1969–1978. https://doi.org/10.1016/s0043-1354(00)00483-8

    CAS  Article  PubMed  Google Scholar 

  13. Kuang PJ, Chen N, Feng CP, Li M, Dong SS, Lv L, Zhang J, Hu ZX, Deng Y (2018) Construction and optimization of an iron particle-zeolite packing electrochemical-adsorption system for the simultaneous removal of nitrate and by-products. J Taiwan Inst Chem Eng 86:101–112. https://doi.org/10.1016/j.jtice.2018.02.023

    CAS  Article  Google Scholar 

  14. Lu HJ, Chandran K, Stensel D (2014) Microbial ecology of denitrification in biological wastewater treatment. Water Res 64:237–254. https://doi.org/10.1016/j.waters.2014.06.42

    CAS  Article  PubMed  Google Scholar 

  15. Mahmudov R, Huang CP (2010) Perchlorate removal by activated carbon adsorption. Sep Purif Technol 70(3):329–337. https://doi.org/10.1016/j.seppur.2009.10.016

    CAS  Article  Google Scholar 

  16. Mao YP, Xia Y, Zhang T (2013) Characterization of thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing. Bioresour Technol 128:703–710. https://doi.org/10.1016/j.biortech.2012.10.106

    CAS  Article  PubMed  Google Scholar 

  17. Matos CT, Velizarov S, Crespo JG, Reis MA (2006) Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept. Water Res 40(2):231–240. https://doi.org/10.1016/j.watres.2005.10.022

    CAS  Article  PubMed  Google Scholar 

  18. Moon HS, Shin DY, Nam K, Kim JY (2008) A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier. Chemosphere 73(5):723–728. https://doi.org/10.1016/j.chemosphere.2008.06.065

    CAS  Article  PubMed  Google Scholar 

  19. Rodriguez J, Hiras J, Hanson TE (2011) Sulfite oxidation in Chlorobaculum tepidum. Front Microbiol 2:7. https://doi.org/10.3389/fmicb.2011.00112

    CAS  Article  Google Scholar 

  20. Sahu AK, Conneely T, Nüsslein KR, Ergas SJ (2009) Biological perchlorate reduction in packed bed reactors using elemental sulfur. Environ Sci Technol 43(12):4466–4471. https://doi.org/10.1021/es900563f

    CAS  Article  PubMed  Google Scholar 

  21. Sevda S, Sreekishnan TR, Pous N, Puig S, Pant D (2018) Bioelectroremediation of perchlorate and nitrate contaminated water: a review. Bioresour Technol 255:331–339. https://doi.org/10.1016/j.biortech.2018.02.005

    CAS  Article  PubMed  Google Scholar 

  22. Soares MIM (2002) Denitrification of groundwater with elemental sulfur. Water Res 36(5):1392–1395. https://doi.org/10.1016/s0043-1354(01)00326-8

    CAS  Article  PubMed  Google Scholar 

  23. Song QA, Li M, Wang LL, Ma XJ, Liu F, Liu X (2019) Mechanism and optimization of electrochemical system for simultaneous removal of nitrate and ammonia. J Hazard Mater 363:119–126. https://doi.org/10.1016/j.jhazmat.2018.09.046

    CAS  Article  PubMed  Google Scholar 

  24. Ucar D, Sahinkaya E, Yilmaz T, Cakmak Y (2019) Simultaneous nitrate and perchlorate reduction in an elemental sulfur-based denitrifying membrane bioreactor. Int Biodeterior Biodegrad. https://doi.org/10.1016/j.ibiod.2019.104741

    Article  Google Scholar 

  25. Urbansky ET, Brown SK, Magnuson ML, Kelty CA (2001) Perchlorate levels in samples of sodium nitrate fertilizer derived from Chilean caliche. Environ Pollut 112(3):299–302. https://doi.org/10.1016/s0269-7491(00)00132-9

    CAS  Article  PubMed  Google Scholar 

  26. Wan DJ, Liu YD, Niu ZH, Xiao SH, Li DR (2016) Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing. Biodegradation 27(1):47–57. https://doi.org/10.1007/s10532-015-9754-1

    CAS  Article  PubMed  Google Scholar 

  27. Wan DJ, Liu YD, Wang YY, Wang HJ, Xiao SH (2017) Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: kinetics and bacterial community structure. Water Res 108:280–292. https://doi.org/10.1016/j.watres.2016.11.003

    CAS  Article  PubMed  Google Scholar 

  28. Wan DJ, Li Q, Liu YD, Xiao SH, Wang HJ (2019) Simultaneous reduction of perchlorate and nitrate in a combined heterotrophic-sulfur-autotrophic system: Secondary pollution control, pH balance and microbial community analysis. Water Res. https://doi.org/10.1016/j.watres.2019.115004

    Article  PubMed  Google Scholar 

  29. Wan DJ, Liu YD, Wang YY, Li Q, Jin JN, Xiao SH (2019) Sulfur disproportionation tendencies in a sulfur packed bed reactor for perchlorate bio-autotrophic reduction at different temperatures and spatial distribution of microbial communities. Chemosphere 215:40–49. https://doi.org/10.1016/j.chemosphere.2018.10.006

    CAS  Article  PubMed  Google Scholar 

  30. Wang Z, Fei X, He SB, Huang JC, Zhou WL (2017) Comparison of heterotrophic and autotrophic denitrification processes for treating nitrate-contaminated surface water. Sci Total Environ 579:1706–1714. https://doi.org/10.1016/j.scitotenv.2016.11.194

    CAS  Article  PubMed  Google Scholar 

  31. Wang WH, Wang Y, Fan P, Chen LF, Chai BH, Zhao JC, Sun LQ (2019) Effect of calcium peroxide on the water quality and bacterium community of sediment in black-odor water. Environ Pollut 248:18–27. https://doi.org/10.1016/j.envpol.2018.11.069

    CAS  Article  PubMed  Google Scholar 

  32. Yamamoto M, Nakagawa S, Shimamura S, Takai K, Horikoshi K (2010) Molecular characterization of inorganic sulfur-compound metabolism in the deep-sea epsilonproteobacterium sulfurovum sp NBC37-1. Environ Microbiol 12(5):1144–1152. https://doi.org/10.1111/j.1462-2920.2010.02155.x

    CAS  Article  PubMed  Google Scholar 

  33. Zhang C, Guo JB, Lian J, Lu CC, Ngo HH, Guo WS, Song YY, Guo YK (2017) Characteristics of electron transport chain and affecting factors for thiosulfate-driven perchlorate reduction. Chemosphere 185:539–547. https://doi.org/10.1016/j.chemosphere.2017.07.039

    CAS  Article  PubMed  Google Scholar 

  34. Zhu YP, Wu M, Gao NY, Chu WH, Wang SF (2016) Impacts of nitrate and electron donor on perchlorate reduction and microbial community composition in a biologically activated carbon reactor. Chemosphere 165:134–143. https://doi.org/10.1016/j.chemosphere.2016.08.078

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (grant number 52070073), Key Research and Development Project of Henan Province (grant number 202102310601) and University-Industry Cooperation Research Project in Henan Province (grant number 182107000006).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dongjin Wan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4431 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, Y., Shi, Y. et al. Using a sulfur autotrophic fluidized bed reactor for simultaneous perchlorate and nitrate removal from water: S disproportionation prediction and system optimization. Biodegradation (2021). https://doi.org/10.1007/s10532-021-09957-8

Download citation

Keywords

  • Perchlorate
  • Nitrate
  • Sulfur autotrophic fluidized bed reactor
  • S disproportionation
  • Response surface methodology
  • High-throughput sequencing