Skip to main content

Temperature-induced difference in microbial characterizations accounts for the fluctuation of sequencing batch biofilm reactor performance

Abstract

Generally, the purification performance of bioreactors could be influenced by temperature variation via shaping different microbial communities. However, the underlying mechanisms remain largely unknown. Here, the variation trends of microbial communities in three sequencing batch biofilm reactors (SBBRs) under four different temperatures (15, 20, 25, 30 °C) were compared. It was found that temperature increment led to an obvious enhancement in nutrient removal which was mainly occurred in the aerobic section. Meanwhile, distinct differences in dominant microbial communities or autotrophic nitrifiers were also observed. The performance of the SBBR reactors was closely associated with nitrifier communities since the treated wastewater was characterized by a severe lack of carbon sources (mean effluent COD ≤ 14.4 mg/L). Spearman correlation unraveled that: most of the differentiated microbes as well as the dominant potential functions were strongly associated with nutrient removal, indicating the temperature-induced difference in microbial community well explained the distinction in purification performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ai CB, Yan Z, Zhou H, Hou SS, Chai LY, Qiu GZ, Zeng WM (2019) Metagenomic insights into the effects of seasonal temperature variation on the activities of activated sludge. Microorganisms 7(12):18. https://doi.org/10.3390/microorganisms7120713

    CAS  Article  Google Scholar 

  2. Al Ali AA, Naddeo V, Hasan SW, Yousef AF (2020) Correlation between bacterial community structure and performance efficiency of a full-scale wastewater treatment plant. J Water Process Eng 37:10. https://doi.org/10.1016/j.jwpe.2020.101472

    Article  Google Scholar 

  3. APHA (2017) Standard methods for the examination of water and wastewater, 23rd ed. American Public Health Association, American Water Works Association, Washington, DC, Water Environment Federation

  4. Bulusu V, Jayaraman V, Balaram H (2011) Metabolic fate of fumarate, a side product of the purine salvage pathway in the intraerythrocytic stages of plasmodium falciparum. J Biol Chem 286(11):9236–9245. https://doi.org/10.1074/jbc.M110.173328

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Cao YF, Zhang CS, Rong HW, Zheng GL, Zhao LM (2017) The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR). Water Res 108:86–94. https://doi.org/10.1016/j.watres.2016.10.063

    CAS  Article  PubMed  Google Scholar 

  6. Chaali M, Naghdi M, Brar SK, Avalos-Ramirez A (2018) A review on the advances in nitrifying biofilm reactors and their removal rates in wastewater treatment. J Chem Technol Biotechnol 93(11):3113–3124. https://doi.org/10.1002/jctb.5692

    CAS  Article  Google Scholar 

  7. Chen F, Cao YJ, Wei S, Li YZ, Li XY, Wang Q, Wang GJ (2015) Regulation of arsenite oxidation by the phosphate two-component system PhoBR in Halomonas sp HAL1. Front Microbiol 6:9. https://doi.org/10.3389/fmicb.2015.00923

    Article  Google Scholar 

  8. Collings EJ, Bunce JT, Jong MC, Graham DW (2020) Impact of cold temperatures on nitrogen removal in denitrifying down-flow hanging sponge (DDHS) reactors. Water 12(7):10. https://doi.org/10.3390/w12072029

    CAS  Article  Google Scholar 

  9. Ding S, He J, Luo XZ, Zheng Z (2020) Simultaneous nitrogen and carbon removal in a packed A/O reactor: effect of C/N ratio on microbial community structure. Bioprocess Biosyst Eng 43(7):1241–1252. https://doi.org/10.1007/s00449-020-02319-3

    CAS  Article  PubMed  Google Scholar 

  10. Dolinsek J, Lagkouvardos I, Wanek W, Wagner M, Daims H (2013) Interactions of nitrifying bacteria and heterotrophs: identification of a micavibrio-like putative predator of Nitrospira spp. Appl Environ Microbiol 79(6):2027–2037. https://doi.org/10.1128/aem.03408-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Gao HF, Bai JH, He XH, Zhao QQ, Lu QQ, Wang JJ (2014) High temperature and salinity enhance soil nitrogen mineralization in a tidal freshwater marsh. PLoS ONE 9(4):9. https://doi.org/10.1371/journal.pone.0095011

    CAS  Article  Google Scholar 

  12. Gonzalez-Martinez A, Rodriguez-Sanchez A, Garcia-Ruiz MJ, Munoz-Palazon B, Cortes-Lorenzo C, Osorio F, Vahala R (2016) Performance and bacterial community dynamics of a CANON bioreactor acclimated from high to low operational temperatures. Chem Eng J 287:557–567. https://doi.org/10.1016/j.cej.2015.11.081

    CAS  Article  Google Scholar 

  13. Li HK, Zhong YM, Huang H, Tan ZX, Sun Y, Liu H (2020) Simultaneous nitrogen and phosphorus removal by interactions between phosphate accumulating organisms (PAOs) and denitrifying phosphate accumulating organisms (DPAOs) in a sequencing batch reactor. Sci Total Environ 744:9. https://doi.org/10.1016/j.scitotenv.2020.140852

    CAS  Article  Google Scholar 

  14. Luo HL, Song YD, Zhou YX, Yang LW, Zhao YQ (2017) Effects of rapid temperature rising on nitrogen removal and microbial community variation of anoxic/aerobic process for ABS resin wastewater treatment. Environ Sci Pollut Res 24(6):5509–5520. https://doi.org/10.1007/s11356-016-8233-5

    CAS  Article  Google Scholar 

  15. Luo YS, Yao JQ, Wang XY, Zheng MY, Guo DY, Chen YG (2020) Efficient municipal wastewater treatment by oxidation ditch process at low temperature: bacterial community structure in activated sludge. Sci Total Environ 703:9. https://doi.org/10.1016/j.scitotenv.2019.135031

    CAS  Article  Google Scholar 

  16. Ma WW, Han YX, Ma WC, Han HJ, Zhu H, Xu CY, Li K, Wang DX (2017) Enhanced nitrogen removal from coal gasification wastewater by simultaneous nitrification and denitrification (SND) in an oxygen-limited aeration sequencing batch biofilm reactor. Bioresource Technol 244:84–91. https://doi.org/10.1016/j.biortech.2017.07.083

    CAS  Article  Google Scholar 

  17. Ma X, Zhao BW, Zhang X, Xie F, Cui Y, Li H, Yue XP (2020) Effect of periodic temperature shock on nitrogen removal performance and microbial community structure in plug-flow microaerobic sludge blanket. Chemosphere 241:8. https://doi.org/10.1016/j.chemosphere.2019.124934

    CAS  Article  Google Scholar 

  18. Miao L, Wang SY, Li BK, Cao TH, Zhang FZ, Wang Z, Peng YZ (2016) Effect of carbon source type on intracellular stored polymers during endogenous denitritation (ED) treating landfill leachate. Water Res 100:405–412. https://doi.org/10.1016/j.watres.2016.05.010

    CAS  Article  PubMed  Google Scholar 

  19. Niu JQ, Ma M, Yin XN, Liu XL, Dong T, Sun WT, Yang FX (2020) Transcriptional and physiological analyses of reduced density in apple provide insight into the regulation involved in photosynthesis. PLoS ONE 15(10):14. https://doi.org/10.1371/journal.pone.0239737

    CAS  Article  Google Scholar 

  20. Park MR, Park H, Chandran K (2017) Molecular and kinetic characterization of planktonic Nitrospira spp. selectively enriched from activated sludge. Environ Sci Technol 51(5):2720–2728. https://doi.org/10.1021/acs.est.6b05184

    CAS  Article  PubMed  Google Scholar 

  21. Peng B, Liang H, Wang S, Gao D (2020) Effects of DO on N2O emission during biological nitrogen removal using aerobic granular sludge via shortcut simultaneous nitrification and denitrification. Environ Technol 41(2):251–259. https://doi.org/10.1080/09593330.2018.1494757

    CAS  Article  PubMed  Google Scholar 

  22. Ray S, Scholz M, Haritash AK (2019) Kinetics of carbon and nitrogen assimilation by heterotrophic microorganisms during wastewater treatment. Environ Monit Assess. https://doi.org/10.1007/s10661-019-7599-5

    Article  PubMed  Google Scholar 

  23. Sayi-Ucar N, Sarioglu M, Insel G, Cokgor EU, Orhon D, van Loosdrecht MCM (2015) Long-term study on the impact of temperature on enhanced biological phosphorus and nitrogen removal in membrane bioreactor. Water Res 84:8–17. https://doi.org/10.1016/j.watres.2015.06.054

    CAS  Article  PubMed  Google Scholar 

  24. Senior AE (1988) ATP synthesis by oxidative-phosphorylation. Physiol Rev 68(1):177–231. https://doi.org/10.1152/physrev.1988.68.1.177

    CAS  Article  PubMed  Google Scholar 

  25. Shen QS, Ji FY, Wei JZ, Fang DX, Zhang Q, Jiang L, Cai AR, Kuang L (2020) The influence mechanism of temperature on solid phase denitrification based on denitrification performance, carbon balance, and microbial analysis. Sci Total Environ 732:9. https://doi.org/10.1016/j.scitotenv.2020.139333

    CAS  Article  Google Scholar 

  26. Tan C, Ma F, Li A, Qiu S, Li JZ (2013) Evaluating the effect of dissolved oxygen on simultaneous nitrification and denitrification in polyurethane foam contact oxidation reactors. Water Environ Res 85(3):195–202. https://doi.org/10.2175/106143012x13503213812445

    CAS  Article  PubMed  Google Scholar 

  27. Virdis B, Rabaey K, Rozendal RA, Yuan ZG, Keller J (2010) Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res 44(9):2970–2980. https://doi.org/10.1016/j.watres.2010.02.022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Wang HY, Song Q, Wang J, Zhang H, He QL, Zhang W, Song JY, Zhou JP, Li H (2018) Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sludge sequencing batch reactor with high dissolved oxygen: effects of carbon to nitrogen ratios. Sci Total Environ 642:1145–1152. https://doi.org/10.1016/j.scitotenv.2018.06.081

    CAS  Article  PubMed  Google Scholar 

  29. Wang JY, Rong HW, Cao YF, Zhang CS (2020) Factors affecting simultaneous nitrification and denitrification (SND) in a moving bed sequencing batch reactor (MBSBR) system as revealed by microbial community structures. Bioprocess Biosyst Eng 43(10):1833–1846. https://doi.org/10.1007/s00449-020-02374-w

    CAS  Article  PubMed  Google Scholar 

  30. Wilczak A, Jacangelo JG, Marcinko JP, Odell LH, Kirmeyer GJ, Wolfe RL (1996) Occurrence of nitrification in chloraminated distribution systems. J Am Water Work Assoc 88(7):74–85

    Article  Google Scholar 

  31. Willis AR, Moore C, Mazon-Moya M, Krokowski S, Lambert C, Till R, Mostowy S, Sockett RE (2016) Injections of predatory bacteria work alongside host immune cells to treat shigella infection in zebrafish larvae. Curr Biol 26(24):3343–3351. https://doi.org/10.1016/j.cub.2016.09.067

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Wu P, Zhang XX, Wang CC, Liu WR, Faustin F (2020) Feasibility of applying intermittent aeration and baffles for achieving granular nitritation in a continuous short-cut denitrifying phosphorus removal system. Sci Total Environ 715:8. https://doi.org/10.1016/j.scitotenv.2020.137023

    CAS  Article  Google Scholar 

  33. Xu R, Zhang K, Xie SX, Liu P, Yu ZS, Han HW, Zhao S, Peng L, Li XK (2021) Evaluation of electricity production from paper industry wastewater by Cellulomonas iranensis LZ-P1 isolated from giant panda. J Clean Prod 278:11. https://doi.org/10.1016/j.jclepro.2020.123576

    CAS  Article  Google Scholar 

  34. Xu XC, Qiu LY, Wang C, Yang FL (2019a) Achieving mainstream nitrogen and phosphorus removal through Simultaneous partial nitrification, anammox, denitrification, and denitrifying phosphorus removal (SNADPR) process in a single-tank integrative reactor. Bioresource Technol 284:80–89. https://doi.org/10.1016/j.biortech.2019.03.109

    CAS  Article  Google Scholar 

  35. Xu ZS, Dai XH, Chai XL (2019b) Effect of temperature on tertiary nitrogen removal from municipal wastewater in a PHBV/PLA-supported denitrification system. Environ Sci Pollut Res 26(26):26893–26899. https://doi.org/10.1007/s11356-019-05823-6

    CAS  Article  Google Scholar 

  36. Zhang H, Gong WJ, Zeng WC, Yan ZS, Jia BH, Li GB, Liang H (2020a) Organic carbon promotes algae proliferation in membrane-aeration based bacteria-algae symbiosis system (MA-BA). Water Res. https://doi.org/10.1016/j.watres.2020.115736

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang Q, Chen X, Luo WD, Wu H, Liu XY, Chen W, Tang JH, Zhang LJ (2019) Effects of temperature on the characteristics of nitrogen removal and microbial community in post solid-phase denitrification biofilter process. Int J Environ Res Public Health 16(22):15. https://doi.org/10.3390/ijerph16224466

    CAS  Article  Google Scholar 

  38. Zhang SF, Wang YY, He WT, Wu M, Xing MY, Yang J, Gao NY, Pan ML (2014) Impacts of temperature and nitrifying community on nitrification kinetics in a moving-bed biofilm reactor treating polluted raw water. Chem Eng J 236:242–250. https://doi.org/10.1016/j.cej.2013.09.086

    CAS  Article  Google Scholar 

  39. Zhang SY, Jiang XL, Li M, Zhang Q, Yuan JL, Guo WJ (2020b) Effects of deoxygenation pretreatment and dissolved oxygen adjustment on performance of double-layer-packed sequencing biofilm batch reactor treating secondary effluent under low temperature. J Clean Prod 258:120650. https://doi.org/10.1016/j.jclepro.2020.120650

    CAS  Article  Google Scholar 

  40. Zhou GQ, Li N, Rene EOR, Liu Q, Dai MX, Kong Q (2019) Chemical composition of extracellular polymeric substances and evolution of microbial community in activated sludge exposed to ibuprofen. J Environ Manage 246:267–274. https://doi.org/10.1016/j.jenvman.2019.05.044

    CAS  Article  PubMed  Google Scholar 

  41. Zhou HX, Li X, Xu GR, Yu HR (2018) Overview of strategies for enhanced treatment of municipal/domestic wastewater at low temperature. Sci Total Environ 643:225–237. https://doi.org/10.1016/j.scitotenv.2018.06.100

    CAS  Article  PubMed  Google Scholar 

  42. Zhou HX, Li XK, Chu ZR, Zhang J (2016) Effect of temperature downshifts on a bench-scale hybrid A/O system: process performance and microbial community dynamics. Chemosphere 153:500–507. https://doi.org/10.1016/j.chemosphere.2016.03.092

    CAS  Article  PubMed  Google Scholar 

  43. Zhou HX, Xu GR (2019) Integrated effects of temperature and COD/N on an up-flow anaerobic filter-biological aerated filter: performance, biofilm characteristics and microbial community. Bioresource Technol 293:9. https://doi.org/10.1016/j.biortech.2019.122004

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Open Research Program from the Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture (ZJK201902), the CRSRI Open Research Program (Program SN: CKWV2019765/KY), and the Fundamental Research Funds for the Central Universities (WUT: 2019III107CG).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shiyang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22222 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhong, Q., Jiang, Y. et al. Temperature-induced difference in microbial characterizations accounts for the fluctuation of sequencing batch biofilm reactor performance. Biodegradation 32, 595–610 (2021). https://doi.org/10.1007/s10532-021-09955-w

Download citation

Keywords

  • Sequencing batch biofilm reactor (SBBR)
  • Microbial communities
  • Purification performance
  • Temperature variation
  • Potential functions