Properties affecting transfer and expression of degradative plasmids for the purpose of bioremediation

Abstract

Plasmids, circular DNA that exist and replicate outside of the host chromosome, have been important in the spread of non-essential genes as well as the rapid evolution of prokaryotes. Recent advances in environmental engineering have aimed to utilize the mobility of plasmids carrying degradative genes to disseminate them into the environment for cost-effective and environmentally friendly remediation of harmful contaminants. Here, we review the knowledge surrounding plasmid transfer and the conditions needed for successful transfer and expression of degradative plasmids. Both abiotic and biotic factors have a great impact on the success of degradative plasmid transfer and expression of the degradative genes of interest. Properties such as ecological growth strategies of bacteria may also contribute to plasmid transfer and may be an important consideration for bioremediation applications. Finally, the methods for detection of conjugation events have greatly improved and the application of these tools can help improve our understanding of conjugation in complex communities. However, it remains clear that more methods for in situ detection of plasmid transfer are needed to help detangle the complexities of conjugation in natural environments to better promote a framework for precision bioremediation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of data and materials

All data analyzed during this study are included in this published article or are available from the corresponding author on reasonable request.

References

  1. Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36:697–705

    Article  Google Scholar 

  2. Alderliesten JB, Duxbury SJN, Zwart MP et al (2020) Effect of donor-recipient relatedness on the plasmid conjugation frequency: a meta-analysis. BMC Microbiol. https://doi.org/10.1186/s12866-020-01825-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:158

    Article  Google Scholar 

  4. Andreoni V, Gianfreda L (2007) Bioremediation and monitoring of aromatic-polluted habitats. Appl Microbiol Biotechnol 76:287–308. https://doi.org/10.1007/s00253-007-1018-5

    CAS  Article  PubMed  Google Scholar 

  5. Atlas RM, Bartha R (1997) Microbial ecology: fundamentals and applications, 4th edn. Benjamin Cummings, San Francisco

    Google Scholar 

  6. Baltrus DA (2013) Exploring the costs of horizontal gene transfer. Trends Ecol Evol 28:489–495

    Article  Google Scholar 

  7. Bergstrom CT, Lipsitch M, Levin BR (2000) Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics 155:1505–1519

    CAS  Article  Google Scholar 

  8. Bleakley BH, Crawford DL (1989) The effect of varying moisture and nutrient levels on the transfer of a conjugative plasmid between Streptomyces species in soil Fungal Growth on Soil Substances View project. The potential effects of woodchip bioreactors on transporting microbes. Can J Microbiol. https://doi.org/10.1139/m89-086

    Article  Google Scholar 

  9. Brzeszcz J, Steliga T, Kapusta P et al (2016) r-strategist versus K-strategist for the application in bioremediation of hydrocarbon-contaminated soils. Int Biodeterior Biodegrad 106:41–52. https://doi.org/10.1016/j.ibiod.2015.10.001

    CAS  Article  Google Scholar 

  10. Cavalli LL, Lederberg J, Lederberg EM (1953) An infective factor controlling sex compatibility in Bacterium coli. J Gen Microbiol 8:89–103. https://doi.org/10.1099/00221287-8-1-89

    CAS  Article  PubMed  Google Scholar 

  11. César CE, Machón C, De La Cruz F, Llosa M (2006) A new domain of conjugative relaxase TrwC responsible for efficient oriT-specific recombination on minimal target sequences. Mol Microbiol 62:984–996. https://doi.org/10.1111/j.1365-2958.2006.05437.x

    CAS  Article  PubMed  Google Scholar 

  12. Christie PJ, Cascales E (2009) Structural and dynamic properties of bacterial Type IV secretion systems (Review). Mol Membr Biol 22:51–61. https://doi.org/10.1080/09687860500063316

    CAS  Article  Google Scholar 

  13. Datta N, Hedges RW (1973) R factors of compatibility group A. J Gen Microbiol 74:335–337. https://doi.org/10.1099/00221287-74-2-335

    CAS  Article  PubMed  Google Scholar 

  14. De Gelder L, Ponciano JM, Joyce P, Top EM (2007) Stability of a promiscuous plasmid in different hosts: No guarantee for a long-term relationship. Microbiology 153:452–463. https://doi.org/10.1099/mic.0.2006/001784-0

    CAS  Article  PubMed  Google Scholar 

  15. DiGiovanni GD, Neilson JW, Pepper IL, Sinclair NA (1996) Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients. Appl Environ Microbiol 62:2521–2526. https://doi.org/10.1128/aem.62.7.2521-2526.1996

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Draper O, César CE, Machón C et al (2005) Site-specific recombinase and integrase activities of a conjugative relaxase in recipient cells. Proc Natl Acad Sci USA 102:16385–16390. https://doi.org/10.1073/pnas.0506081102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Elsas JD, Bailey MJ (2006) The ecology of transfer of mobile genetic elements. FEMS Microbiol Ecol 42:187–197. https://doi.org/10.1111/j.1574-6941.2002.tb01008.x

    Article  Google Scholar 

  18. Fernandez-Astorga A, Muela A, Cisterna R et al (1992) Biotic and abiotic factors affecting plasmid transfer in Escherichia coli strains. Appl Environ Microbiol 58:392–398

    CAS  Article  Google Scholar 

  19. Fernandez-Lopez R, de Toro M, Moncalian G et al (2016) Comparative genomics of the conjugation region of F-like plasmids: five shades of F. Front Mol Biosci. https://doi.org/10.3389/fmolb.2016.00071

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fernandez-Lopez R, Redondo S, Garcillan-Barcia MP, de la Cruz F (2017) Towards a taxonomy of conjugative plasmids. Curr Opin Microbiol 38:106–113

    CAS  Article  Google Scholar 

  21. Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Publ Gr. https://doi.org/10.1038/nrmicro.2017.87

    Article  Google Scholar 

  22. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. https://doi.org/10.1890/05-1839

    Article  PubMed  Google Scholar 

  23. Firth N, Ippen-ihler K, Skurray RA (1996) Structure and function of the F factor and mechanism of conjugation Escherichia coli Salmonella typhimurium. Cell Mol Biol 126:2377–2401

    Google Scholar 

  24. Forns N, Baños RC, Balsalobre C et al (2005) Temperature-dependent conjugative transfer of R27: role of chromosome-and plasmid-encoded Hha and H-NS proteins. J Bacteriol 187:3950–3959. https://doi.org/10.1128/JB.187.12.3950-3959.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Fox RE, Zhong X, Krone SM, Top EM (2008) Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations. ISME J 2:1024–1039. https://doi.org/10.1038/ismej.2008.53

    Article  PubMed  Google Scholar 

  26. Fricke WF, Welch TJ, McDermott PF et al (2009) Comparative genomics of the IncA/C multidrug resistance plasmid family. J Bacteriol 191:4750–4757. https://doi.org/10.1128/JB.00189-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Frost LS, Ippen-Ihler K, Skurray RA (1994) Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 58:162–210

    CAS  Article  Google Scholar 

  28. Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    CAS  Article  Google Scholar 

  29. Furste JP, Pansegrau W, Ziegelin G et al (1989) Conjungative transfer of promiscuous IncP plasmids: interaction of plasmid-encoded products with the transfer origin. Proc Natl Acad Sci USA 86:1771–1775. https://doi.org/10.1073/pnas.86.6.1771

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Gao C, Jin X, Ren J et al (2015) Bioaugmentation of DDT-contaminated soil by dissemination of the catabolic plasmid pDOD. J Environ Sci (china) 27:42–50. https://doi.org/10.1016/j.jes.2014.05.045

    CAS  Article  Google Scholar 

  31. Garbisu C, Garaiyurrebaso O, Epelde L et al (2017) Plasmid-mediated bioaugmentation for the bioremediation of contaminated soils. Front Microbiol 8:1966. https://doi.org/10.3389/fmicb.2017.01966

    Article  PubMed  PubMed Central  Google Scholar 

  32. Garcillán-Barcia MP, Jurado P, González-Pérez B et al (2007) Conjugative transfer can be inhibited by blocking relaxase activity within recipient cells with intrabodies. Mol Microbiol 63:404–416. https://doi.org/10.1111/j.1365-2958.2006.05523.x

    CAS  Article  PubMed  Google Scholar 

  33. Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    CAS  Article  Google Scholar 

  34. Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in Gram-positive bacteria. Microbiol Mol Biol Rev 67:277–301. https://doi.org/10.1128/mmbr.67.2.277-301.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Gullberg E, Albrecht LM, Karlsson C et al (2014) Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. Mbio. https://doi.org/10.1128/mBio.01918-14

    Article  PubMed  PubMed Central  Google Scholar 

  36. Haase J, Lurz R, Grahn AM et al (1995) Bacterial conjugation mediated by plasmid RP4: RSF1010 mobilization, donor-specific phage propagation, and pilus production require the same Tra2 core components of a proposed DNA transport complex. J Bacteriol 177:4779–4791. https://doi.org/10.1128/jb.177.16.4779-4791.1995

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Hall JPJ, Wood AJ, Harrison E, Brockhurst MA (2016) Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. Proc Natl Acad Sci USA 113:8260–8265. https://doi.org/10.1073/pnas.1600974113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Harrison E, Guymer D, Spiers AJ et al (2015) Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum. Curr Biol 25:2034–2039. https://doi.org/10.1016/j.cub.2015.06.024

    CAS  Article  PubMed  Google Scholar 

  39. Hayes F (2003) The function and organization of plasmids. Methods Mol Biol 235:1–17. https://doi.org/10.1385/1-59259-409-3:1

    CAS  Article  PubMed  Google Scholar 

  40. Headd B, Bradford SA (2018) Physicochemical factors that favor conjugation of an antibiotic resistant plasmid in non-growing bacterial cultures in the absence and presence of antibiotics. Front Microbiol 9:2122. https://doi.org/10.3389/fmicb.2018.02122

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ikuma K, Gunsch CK (2012) Genetic bioaugmentation as an effective method for in situ bioremediation: functionality of catabolic plasmids following conjugal transfers. Bioengineered 3:236–241. https://doi.org/10.4161/bbug.20551

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ikuma K, Gunsch CK (2013) Functionality of the TOL plasmid under varying environmental conditions following conjugal transfer. Appl Microbiol Biotechnol 97:395–408. https://doi.org/10.1007/s00253-012-3949-8

    CAS  Article  PubMed  Google Scholar 

  43. Ikuma K, Holzem RM, Gunsch CK (2012) Impacts of organic carbon availability and recipient bacteria characteristics on the potential for TOL plasmid genetic bioaugmentation in soil slurries. Chemosphere 89:158–163. https://doi.org/10.1016/j.chemosphere.2012.05.086

    CAS  Article  PubMed  Google Scholar 

  44. Johnsen AR, Kroer N (2007) Effects of stress and other environmental factors on horizontal plasmid transfer assessed by direct quantification of discrete transfer events. FEMS Microbiol Ecol 59:718–728. https://doi.org/10.1111/j.1574-6941.2006.00230.x

    CAS  Article  PubMed  Google Scholar 

  45. Kennedy N, Beutin L, Achtman M et al (1977) Conjugation proteins encoded by the F sex factor. Nature 270:580–585. https://doi.org/10.1038/270580a0

    CAS  Article  PubMed  Google Scholar 

  46. Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333. https://doi.org/10.1128/AEM.66.4.1328-1333.2000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Kottara A, Hall JPJ, Harrison E, Brockhurst MA (2018) Variable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species. FEMS Microbiol Ecol 94:172. https://doi.org/10.1093/femsec/fix172

    CAS  Article  Google Scholar 

  48. Król JE, Nguyen HD, Rogers LM et al (2011) Increased transfer of a multidrug resistance plasmid in Escherichia coli biofilms at the air-liquid interface. Appl Environ Microbiol 77:5079–5088. https://doi.org/10.1128/AEM.00090-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Kumar CC, Novick RP (1985) Plasmid pT181 replication is regulated by two countertranscripts. Proc Natl Acad Sci USA 82:638–642. https://doi.org/10.1073/pnas.82.3.638

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Lafuente R, Maymó-Gatell X, Mas-Castellà J, Guerrero R (1996) Influence of environmental factors on plasmid transfer in soil microcosms. Curr Microbiol 32:213–220

    CAS  Article  Google Scholar 

  51. Lanka E, Wilkins BM (1995) DNA processing reactions in bacterial conjugation. Annu Rev Biochem 64:141–169

    CAS  Article  Google Scholar 

  52. Lawley TD, Klimke WA, Gubbins MJ, Frost LS (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224:1–15

    CAS  Article  Google Scholar 

  53. Li L, Dechesne A, Madsen JS et al (2020) Plasmids persist in a microbial community by providing fitness benefit to multiple phylotypes. ISME J 14:1170–1181. https://doi.org/10.1038/s41396-020-0596-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Light J, Molin S (1982) The sites of action of the two copy number control functions of plasmid R1. MGG Mol Gen Genet 187:486–493. https://doi.org/10.1007/BF00332633

    CAS  Article  PubMed  Google Scholar 

  55. Lopatkin AJ, Meredith HR, Srimani JK et al (2017) Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun. https://doi.org/10.1038/s41467-017-01532-1

    Article  PubMed  PubMed Central  Google Scholar 

  56. MacLean RC, San Millan A (2015) Microbial evolution: towards resolving the plasmid paradox. Curr Biol 25:R764–R767

    CAS  Article  Google Scholar 

  57. Megharaj M, Ramakrishnan B, Venkateswarlu K et al (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int. https://doi.org/10.1016/j.envint.2011.06.003

    Article  PubMed  Google Scholar 

  58. Miller MN, Stratton GW, Murray G (2004) Effects of soil moisture and aeration on the biodegradation of pentachlorophenol contaminated soil. Bull Environ Contam Toxicol 72:101–108. https://doi.org/10.1007/s00128-003-0246-3

    CAS  Article  PubMed  Google Scholar 

  59. Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375. https://doi.org/10.1016/j.micres.2009.08.001

    CAS  Article  PubMed  Google Scholar 

  60. Mulligan ME, Mcclure WR (1986) Analysis of the occurrence of promoter-sites in DNA. Nucleic Acids Res 14:109–126. https://doi.org/10.1093/nar/14.1.109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Navarre WW, McClelland M, Libby SJ, Fang FC (2007) Silencing of xenogeneic DNA by H-NS - Facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 21:1456–1471

    CAS  Article  Google Scholar 

  62. Navarre WW, Porwollik S, Wang Y et al (2006) Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313:236–238. https://doi.org/10.1126/science.1128794

    CAS  Article  PubMed  Google Scholar 

  63. Novick RP (1987) Plasmid incompatibility. Microbiol Rev 51:381–395

    CAS  Article  Google Scholar 

  64. Novick RP, Hoppensteadt FC (1978) On plasmid incompatibility. Plasmid 1:421–434. https://doi.org/10.1016/0147-619X(78)90001-X

    CAS  Article  PubMed  Google Scholar 

  65. O’Brien TF (2002) Emergence, spread, and environmental effect of antimicrobial resistance: how use of an antimicrobial anywhere can increase resistance to any antimicrobial anywhere else. Clin Infect Dis 34:S78–S84. https://doi.org/10.1086/340244

    Article  PubMed  Google Scholar 

  66. Ortiz-Álvarez R et al (2018) Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession. ISME J. https://doi.org/10.1038/s41396-018-0076-2

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pearce DA, Bazin MJ, Lynch JM (2008) Substrate concentration and plasmid transfer frequency between bacteria in a model rhizosphere. Microbiol Ecol 40:2357–2368. https://doi.org/10.1016/B978-008045405-4.00519-X

    Article  Google Scholar 

  68. Pinedo CA, Smets BF (2005) Conjugal TOL transfer from Pseudomonas putida to Pseudomonas aeruginosa: effects of restriction proficiency, toxicant exposure, cell density ratios, and conjugation detection method on observed transfer efficiencies. Appl Environ Microbiol 71:51–57. https://doi.org/10.1128/AEM.71.1.51-57.2005

    CAS  Article  PubMed  Google Scholar 

  69. Popa O, Hazkani-Covo E, Landan G et al (2011) Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res 21:599–609. https://doi.org/10.1101/gr.115592.110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Roller BRK, Stoddard SF, Schmidt TM (2016) Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol 1:1–7. https://doi.org/10.1038/nmicrobiol.2016.160

    CAS  Article  Google Scholar 

  71. San Millan A, Toll-Riera M, Qi Q et al (2018) Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. ISME J 12:3014–3024. https://doi.org/10.1038/s41396-018-0224-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Santos SR, Ochman H (2004) Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol 6:754–759. https://doi.org/10.1111/j.1462-2920.2004.00617.x

    CAS  Article  PubMed  Google Scholar 

  73. Seoane J, Yankelevich T, Dechesne A et al (2010) An individual-based approach to explain plasmid invasion in bacterial populations. FEMS Microbiol Ecol 75:17–27. https://doi.org/10.1111/j.1574-6941.2010.00994.x

    CAS  Article  PubMed  Google Scholar 

  74. Shachrai I, Zaslaver A, Alon U, Dekel E (2010) Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth. Mol Cell 38:758–767. https://doi.org/10.1016/j.molcel.2010.04.015

    CAS  Article  PubMed  Google Scholar 

  75. Shintani M, Matsui K, Takemura T et al (2008) Behavior of the IncP-7 carbazole-degradative plasmid pCAR1 in artificial environmental samples. Appl Microbiol Biotechnol 80:485–497. https://doi.org/10.1007/s00253-008-1564-5

    CAS  Article  PubMed  Google Scholar 

  76. Simonsen L (2018) The existence conditions for bacterial plasmids: theory and reality. Microbiol Ecol 22:187–205

    Article  Google Scholar 

  77. Smets BF, Rittmann BE, Stahl DA (1993a) The specific growth rate of Pseudomonas putida PAW1 influences the conjugal transfer rate of the TOL plasmid. Appl Environ Microbiol 59:3430–3437. https://doi.org/10.1128/aem.59.10.3430-3437.1993

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Sørensen SJ, Bailey M, Hansen LH et al (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3:700–710. https://doi.org/10.1038/nrmicro1232

    CAS  Article  PubMed  Google Scholar 

  79. Stalder T, Top E (2016) Plasmid Transfer in biofilms: a perspective on limitations and opportunities. NPJ Biofilms Microbiomes. https://doi.org/10.1038/npjbiofilms.2016.22

    Article  PubMed  PubMed Central  Google Scholar 

  80. Svara F, Rankin DJ (2011) The evolution of plasmid-carried antibiotic resistance. BMC Evol Biol 11:130. https://doi.org/10.1186/1471-2148-11-130

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sysoeva TA, Kim Y, Rodriguez J et al (2019) Growth-stage-dependent regulation of conjugation. AIChE J 66:1–10. https://doi.org/10.1002/aic.16848

    CAS  Article  Google Scholar 

  82. Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721. https://doi.org/10.1038/nrmicro1234

    CAS  Article  PubMed  Google Scholar 

  83. Thompson IP, Van Der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7:909–915

    CAS  Article  Google Scholar 

  84. Tomizawa J, Itoh T, Selzer G, Som T (1981) Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proc Natl Acad Sci USA 78:1421–1425. https://doi.org/10.1073/pnas.78.3.1421

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269. https://doi.org/10.1016/S0958-1669(03)00066-1

    CAS  Article  PubMed  Google Scholar 

  86. Top EM, Springael D, Boon N (2002) Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol Ecol 42:199–208. https://doi.org/10.1111/j.1574-6941.2002.tb01009.x

    CAS  Article  PubMed  Google Scholar 

  87. Venkata Mohan S, Falkentoft C, Venkata Nancharaiah Y et al (2009) Bioaugmentation of microbial communities in laboratory and pilot scale sequencing batch biofilm reactors using the TOL plasmid. Bioresour Technol 100:1746–1753. https://doi.org/10.1016/j.biortech.2008.09.048

    CAS  Article  PubMed  Google Scholar 

  88. Vieira-Silva S, Rocha EPC (2010) The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet. https://doi.org/10.1371/journal.pgen.1000808

    Article  PubMed  PubMed Central  Google Scholar 

  89. Vogwill T, Maclean RC (2015) The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol Appl 8:284–295. https://doi.org/10.1111/eva.12202

    Article  PubMed  Google Scholar 

  90. Von Wintersdorff CJH, Penders J, Van Niekerk JM et al (2016) Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 7:173

    Google Scholar 

  91. Wang Y, Kou S, Jiang Q et al (2014) Factors affecting transfer of degradative plasmids between bacteria in soils. Appl Soil Ecol 84:254–261. https://doi.org/10.1016/j.apsoil.2014.07.009

    Article  Google Scholar 

  92. Wickham SA, Lynn DH (1990) Relations between growth rate, cell size, and DNA content in colpodean ciliates (Ciliophora: Colpodea). Eur J Protistol 25:345–352. https://doi.org/10.1016/S0932-4739(11)80127-6

    Article  PubMed  Google Scholar 

  93. Wu L, Yang Y, Chen S et al (2017) Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters. ISME J 11:2874–2878. https://doi.org/10.1038/ismej.2017.135

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Zhang Q, Wang B, Cao Z, Yu Y (2012) Plasmid-mediated bioaugmentation for the degradation of chlorpyrifos in soil. J Hazard Mater 221–222:178–184. https://doi.org/10.1016/j.jhazmat.2012.04.024

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE-1644868 and the National Institute of Health under grant no. P42ES010356.

Funding

This work is supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE-1644868 and the National Institute of Health under grant no. P42ES010356.

Author information

Affiliations

Authors

Contributions

Both authors contributed to the idea for the article. Literature search and data analysis was performed by PMV. The work was drafted by PMV and critically advised by CKG.

Corresponding author

Correspondence to Claudia K. Gunsch.

Ethics declarations

Conflicts of interest

The authors declare that they have no have conflict of interests.

Ethical approval

This review is original and has not been submitted or published for simultaneous consideration.

Consent to participate

The authors consent to participation in this work.

Consent for publication

The authors consent to publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Varner, P.M., Gunsch, C.K. Properties affecting transfer and expression of degradative plasmids for the purpose of bioremediation. Biodegradation 32, 361–375 (2021). https://doi.org/10.1007/s10532-021-09950-1

Download citation

Keywords

  • Bioremediation
  • Horizontal gene transfer
  • Plasmids