Skip to main content

Advertisement

Log in

Degradation of 4-bromophenol by Ochrobactrum sp. HI1 isolated from desert soil: pathway and isotope effects

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Anthropogenic activities have introduced elevated levels of brominated phenols to the environment. These compounds are associated with toxic and endocrine effects, and their environmental fate is of interest. An aerobic strain Ochrobactrum sp. HI1 was isolated from soils in the vicinity of a bromophenol production plant and tested for its ability to degrade 4-bromophenol (4-BP). A ring hydroxylation pathway of degradation was proposed, using the evidence from degradation intermediates analysis and multi-element (C, Br, H) compound-specific isotope analysis. Benzenetriol and 4-bromocatechol were detected during degradation of 4-bromophenol. Degradation resulted in a normal carbon isotope effect (εC = −1.11 ± 0.09‰), and in insignificant bromine and hydrogen isotope fractionation. The dual C–Br isotope trend for ring hydroxylation obtained in the present study differs from the trends expected for reductive debromination or photolysis. Thus, the isotope data reported herein can be applied in future field studies to delineate aerobic biodegradation processes and differentiate them from other natural attenuation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abraham J, Silambarasan S (2016) Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: a proposal of its metabolic pathway. Pestic Biochem Physiol 126:13–21

    Article  CAS  PubMed  Google Scholar 

  • Aeppli C, Tysklind M, Holmstrand H, Gustafsson OR (2012) Use of Cl and C isotopic fractionation to identify degradation and sources of polychlorinated phenols: mechanistic study and field application. Environ Sci Technol 47:790–797

    Article  CAS  PubMed  Google Scholar 

  • Ahn Y-B, Rhee S-K, Fennell DE, Kerkhof LJ, Hentschel U, Häggblom MM (2003) Reductive dehalogenation of brominated phenolic compounds by microorganisms associated with the marine sponge Aplysina aerophoba. Appl Environ Microbiol 69:4159–4166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An T, Zu L, Li G, Wan S, Mai B, Wong PK (2011) One-step process for debromination and aerobic mineralization of tetrabromobisphenol-A by a novel Ochrobactrum sp. T isolated from an e-waste recycling site. Bioresour Technol 102:9148–9154

    Article  CAS  PubMed  Google Scholar 

  • Apha A (2005) WPCF. 1989 Standard methods for the examination of water and wastewater 17

  • Arbeli Z, Ronen Z, Díaz-Báez MC (2006) Reductive dehalogenation of tetrabromobisphenol-A by sediment from a contaminated ephemeral streambed and an enrichment culture. Chemosphere 64:1472–1478

    Article  CAS  PubMed  Google Scholar 

  • Arnon S, Ronen Z, Yakirevich A, Adar E (2006) Evaluation of soil flushing potential for clean-up of desert soil contaminated by industrial wastewater. Chemosphere 62:17–25

    Article  CAS  PubMed  Google Scholar 

  • Bae HS, Lee JM, Lee S-T (1996) Biodegradation of 4-chlorophenol via a hydroquinone pathway by Arthrobacter ureafaciens CPR706. FEMS Microbiol Lett 145:125–129

    Article  CAS  PubMed  Google Scholar 

  • Bernstein A, Ronen Z, Levin E, Halicz L, Gelman F (2013) Kinetic bromine isotope effect: example from the microbial debromination of brominated phenols. Anal Bioanal Chem 405:2923–2929

    Article  CAS  PubMed  Google Scholar 

  • Boyle AW, Phelps CD, Young L (1999) Isolation from estuarine sediments of aDesulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2, 4, 6-tribromophenol. Appl Environ Microbiol 65:1133–1140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burka LT, Plucinski TM, Macdonald TL (1983) Mechanisms of hydroxylation by cytochrome P-450: metabolism of monohalobenzenes by phenobarbital-induced microsomes. Proc Natl Acad Sci 80:6680–6684

    Article  CAS  PubMed  Google Scholar 

  • Dorer C, Vogt C, Kleinsteuber S, Stams AJ, Richnow H-H (2014) Compound-specific isotope analysis as a tool to characterize biodegradation of ethylbenzene. Environ Sci Technol 48:9122–9132

    Article  CAS  PubMed  Google Scholar 

  • Elsner M (2010) Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J Environ Monit 12:2005–2031

    Article  CAS  PubMed  Google Scholar 

  • Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol 39:6896–6916. https://doi.org/10.1021/es0504587

    Article  CAS  PubMed  Google Scholar 

  • Ezechiáš M, Covino S, Cajthaml T (2014) Ecotoxicity and biodegradability of new brominated flame retardants: a review. Ecotoxicol Environ Saf 110:153–167. https://doi.org/10.1016/j.ecoenv.2014.08.030

    Article  CAS  PubMed  Google Scholar 

  • Fava F, Armenante P, Kafkewitz D (1995) Aerobic degradation and dechlorination of 2–chlorophenol, 3-chlorophenol and 4-chlorophenol by a Pseudomonas pickettii strain. Lettn Appl Microbiol 21:307–312

    Article  CAS  Google Scholar 

  • Fischer A, Herklotz I, Herrmann S, Thullner M, Weelink SAB, Stams AJM, Schlomann M, Richnow H-H, Vogt C (2008) Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. Environ Sci Technol 42:4356–4363  

    Article  CAS  PubMed  Google Scholar 

  • Gelman F, Halicz L (2010) High precision determination of bromine isotope ratio by GC-MC-ICPMS. Int J Mass Spectrom 289:167–169

    Article  CAS  Google Scholar 

  • Gribble GW (1999) The diversity of naturally occurring organobromine compounds. Chem Soc Rev 28:335–346

    Article  CAS  Google Scholar 

  • Gribble GW (2000) The natural production of organobromine compounds. Environ Sci Pollut Res 7:37–49

    Article  CAS  Google Scholar 

  • Hofstetter TB, Schwarzenbach RP, Bernasconi SM (2008) Assessing transformation processes of organic compounds using stable isotope fractionation. Environ Sci Technol 42:7737–7743

    Article  CAS  PubMed  Google Scholar 

  • Hollender J, Hopp J, Dott W (1997) Degradation of 4-chlorophenol via the meta cleavage pathway by comamonas testosteroni JH5. Appl Environ Microbiol 63:4567–4572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunkeler D, Meckenstock RU, Lollar BS, Schmidt TC, Wilson JT (2008) A guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis (CSIA). Office of Research and Development, National Risk Management Research Laboratory, Ada

    Google Scholar 

  • Jezequel S, Higgins I (1983) Mechanistic aspects of biotransformations by the monooxygenase system of Methylosinus trichosporium OB3b. J Chem Technol Biotechnol 33:139–144

    Article  Google Scholar 

  • Kiyohara H, Hatta T, Ogawa Y, Kakuda T, Yokoyama H, Takizawa N (1992) Isolation of Pseudomonas pickettii strains that degrade 2, 4, 6-trichlorophenol and their dechlorination of chlorophenols. Appl Environ Microbiol 58:1276–1283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korzekwa KR, Swinney DC, Trager WF (1989) Isotopically labeled chlorobenzenes as probes for the mechanism of cytochrome P-450 catalyzed aromatic hydroxylation Biochemistry 28:9019–9027

  • Kuder T, Bernstein A, Gelman F (Submitted) Derivatization-free method for compound-specific isotope analysis of nonexchangeable hydrogen of 4-bromophenol rapid communications in mass spectrometry

  • Kuder T, Philp P (2013) Demonstration of compound-specific isotope analysis of hydrogen isotope ratios in chlorinated ethenes. Environ Sci Technol 47:1461–1467

    Article  CAS  PubMed  Google Scholar 

  • Li Z et al (2015) Anaerobic mineralization of 2, 4, 6-tribromophenol to CO2 by a synthetic microbial community comprising Clostridium, Dehalobacter, and Desulfatiglans. Bioresour Technol 176:225–232

    Article  CAS  PubMed  Google Scholar 

  • Louie TM, Webster CM, Xun L (2002) Genetic and biochemical characterization of a 2, 4, 6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J Bacteriol 184:3492–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAllister KA, Lee H, Trevors JT (1996) Microbial degradation of pentachlorophenol. Biodegradation 7:1–40

    Article  CAS  Google Scholar 

  • Mitchell KH, Rogge CE, Gierahn T, Fox BG (2003) Insight into the mechanism of aromatic hydroxylation by toluene 4-monooxygenase by use of specifically deuterated toluene and p-xylene. Proc Natl Acad Sci 100:3784–3789

    Article  CAS  PubMed  Google Scholar 

  • Morasch B, Richnow HH, Schink B, Vieth A, Meckenstock RU (2002) Carbon and hydrogen stable isotope fractionation during aerobic bacterial degradation of aromatic hydrocarbons. Appl Environ Microbiol 68:5191–5194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murínová S, Dercová K (2014) Potential use of newly isolated bacterial strain Ochrobactrum anthropi in bioremediation of polychlorinated biphenyls water. Air Soil Pollut 225:1–16

    Article  CAS  Google Scholar 

  • Nordin K, Unell M, Jansson JK (2005) Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 71:6538–6544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-González DK, Cristiani-Urbina E, Flores-Ortíz CM, Cruz-Maya JA, Cancino-Díaz JC, Jan-Roblero J (2015) Evaluation of the removal of pyrene and fluoranthene by Ochrobactrum anthropi, Fusarium sp. and their coculture. Appl Biochem Biotechnol 175:1123–1138

    Article  CAS  PubMed  Google Scholar 

  • Passeport E, Zhang N, Wu L, Herrmann H, Lollar BS, Richnow H-H (2018) Aqueous photodegradation of substituted chlorobenzenes: Kinetics, carbon isotope fractionation, and reaction mechanisms. Water Res 135:95–103

    Article  CAS  PubMed  Google Scholar 

  • Ronen Z, Vasiluk L, Abeliovich A, Nejidat A (2000) Activity and survival of tribromophenol-degrading bacteria in a contaminated desert soil. Soil Biol Biochem 32:1643–1650

    Article  CAS  Google Scholar 

  • Swings J, Lambert B, Kersters K, Holmes B (2006) The genera phyllobacterium and Ochrobactrum. In: The prokaryotes. Springer, pp 747–750

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evolut 30:2725–2729

    Article  CAS  Google Scholar 

  • Thullner M, Centler F, Richnow H-H, Fischer A (2012) Quantification of organic pollutant degradation in contaminated aquifers using compound specific stable isotope analysis–review of recent developments. Org Geochem 42:1440–1460

    Article  CAS  Google Scholar 

  • Tomaszewski J, Jerina D, Daly J (1975) Deuterium isotope effects during formation of phenols by hepatic monoxygenases. Evidence for an alternative to the arene oxide pathway. Biochemistry 14:2024–2031

    Article  CAS  PubMed  Google Scholar 

  • Vogt C et al (2008) Evaluation of toluene degradation pathways by two-dimensional stable isotope fractionation. Environ Sci Technol 42:7793–7800

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Gilevska T, Wetzig F, Dorer C, Richnow H-H, Vogt C (2016) Characterization of phenol and cresol biodegradation by compound-specific stable isotope analysis. Environ Pollut 210:166–173

    Article  CAS  PubMed  Google Scholar 

  • Wijker RS, Kurt Z, Spain JC, Bolotin J, Zeyer J, Hofstetter TB (2013) Isotope fractionation associated with the biodegradation of 2-and 4-nitrophenols via monooxygenation pathways. Environ Sci Technol 47:14185–14193

    Article  CAS  PubMed  Google Scholar 

  • Xun L, Webster CM (2004) A monooxygenase catalyzes sequential dechlorinations of 2, 4, 6-trichlorophenol by oxidative and hydrolytic reactions. J Biol Chem 279:6696–6700

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Takahama Y, Yamada Y (2008) Biodegradation of 2, 4, 6-tribromophenol by Ochrobactrum sp. strain TB01. Biosci Biotechnol Biochem 72:1264–1271

    Article  CAS  PubMed  Google Scholar 

  • Zakon Y, Halicz L, Gelman F (2013) Bromine and carbon isotope effects during photolysis of brominated phenols. Environ Sci Technol 47:14147–14153

    Article  CAS  PubMed  Google Scholar 

  • Zhang S et al (2012) Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in pseudomonas sp. 1-7. BMC Microbiol 12:1

    Article  CAS  Google Scholar 

  • Zhang N et al (2016) Analyzing sites of OH radical attack (ring vs. side chain) in oxidation of substituted benzenes via dual stable isotope analysis (δ13C and δ2H). Sci Total Environ 542:484–494

    Article  CAS  PubMed  Google Scholar 

  • Zu L, Li G, An T, Wong P-K (2012) Biodegradation kinetics and mechanism of 2, 4, 6-tribromophenol by Bacillus sp. GZT: a phenomenon of xenobiotic methylation during debromination. Bioresour Technol 110:153–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the United States - Israel Binational Science Foundation, BSF Grant Number 2014374. RG fellowship was supported by the Kreitman School of Advanced Graduate Studies, Ben-Gurion University of the Negev. AAT was funded by the National Research Service Award Institutional Training Grant (T32 ES018827) and the USDA ISE Program (Grant # 2010-51160-21070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anat Bernstein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golan, R., Gelman, F., Kuder, T. et al. Degradation of 4-bromophenol by Ochrobactrum sp. HI1 isolated from desert soil: pathway and isotope effects. Biodegradation 30, 37–46 (2019). https://doi.org/10.1007/s10532-018-9860-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-018-9860-y

Keywords

Navigation