Skip to main content
Log in

Impact of additives of commercial rubber compounds on the microbial and enzymatic degradation of poly(cis-1,4-isoprene)

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Much fundamental research has already been performed to understand the mechanism of microbial rubber degradation. Due to the increasing amount of rubber waste, biotechnical methods to degrade that particular waste are strongly needed. The present study evaluates whether a microbial or an enzymatic process is more suitable for efficient biodegradation, due to less sensitivity towards rubber additives. Therefore we investigated the impact of 15 different frequently used rubber additives on cells of the potent rubber degrader Gordonia polyisoprenivorans VH2 and the enzyme Lcp1VH2. For this, cells were grown on poly(cis-1,4-isoprene) in presence of these rubber additives. Furthermore, the effect of those additives on the enzymatic cleavage of poly(cis-1,4-isoprene) by Lcp1VH2 was determined by in vitro studies. It was observed that additives, used to accelerate the vulcanization process, like N-cyclohexyl-2-benzothiazolesulfenamide and zinc-bis(N,N-dibenzyl-dithiocarbamate), are diminishing the growth of the microorganism depending on their concentration—higher toxicity with increasing concentration. In contrast, sulfur prevents cell growth, but does not affect Lcp1VH2. Stearic acid and paraffin wax were found to be consumed by G. polyisoprenivorans VH2. Plasticizers mainly prevent growth, but do not interfere with the enzyme activity. This study identified antioxidants as the most interfering group of additives for microbial and enzymatic rubber degradation. It was found that the in vitro degradation by Lcp1VH2 is much more resistant and less sensitive towards the investigated rubber additives, when compared to the in vivo approach. Therefore, an enzymatic process might be a promising method to enhance rubber degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andler R, Steinbüchel A (2017) A simple, rapid and cost-effective process for production of latex clearing protein to produce oligoisoprene molecules. J Biotechnol 241:184–192. https://doi.org/10.1016/j.jbiotec.2016.12.008

    Article  CAS  PubMed  Google Scholar 

  • Andler R, Altenhoff A-L, Mäsing F, Steinbüchel A (2018) In vitro studies on the degradation of poly(cis-1,4-isoprene). Biotechnol Prog. https://doi.org/10.1002/btpr.2631

    Article  PubMed  Google Scholar 

  • Berekaa MM, Linos A, Reichelt R, Keller U, Steinbüchel A (2000) Effect of pretreatment of rubber material on its biodegradability by various rubber degrading bacteria. FEMS Microbiol Lett 184(2):199–206

    Article  CAS  PubMed  Google Scholar 

  • Bindiya ES, Roselin A, Cikesh PC, Karthikeyan P, Sarita GB, Chandrasekaran M (2014) Antibacterial potential of Luprops tristis—the nuisance rubber plantation pest from Western Ghats of India. IJAIR 3(6):2278–7844

    Google Scholar 

  • Birke J, Jendrossek D (2014) Rubber oxygenase and latex clearing protein cleave rubber to different products and use different cleavage mechanisms. Appl Environ Microbiol 80(16):5012–5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansson M, Stenberg B, Holst O (2000) Toxic additives—a problem for microbial waste rubber desulphurisation. Resour Environ Biotechnol 3(1):11–21

    CAS  Google Scholar 

  • Davies JR, Kam FW (1968) Identification of antioxidants and accelerators in gum and carbon black filled rubbers by thin-layer chromatography. IRI 2:86

    CAS  Google Scholar 

  • De Miguel T, Sieiro C, Poza M, Villa TG (2000) Isolation and taxonomic study of a new canthaxanthin-containing bacterium, Gordonia jacobaea MV-1 sp. nov. Int Microbiol 3:107–111

    PubMed  Google Scholar 

  • Fachgruppe Wasserchemie in d. GDCh, Frimmel F, Forstner U, Raudschus M, Reicher JK (1996) Chemie und Biologie der Altlasten. In: Obst U, Seibel F (eds) Biologische und ökologische Grundlagen, 1st edn. Wiley-VCH, Weinheim, p 59. ISBN 3-527-28802-3

    Google Scholar 

  • Hiessl S, Schuldes J, Thürmer A, Halbsguth T, Bröker D, Angelov A, Liebl W, Daniel R, Steinbüchel A (2012) Involvement of two latex-clearing proteins during rubber degradation and insights into the subsequent degradation pathway revealed by the genome sequence of Gordonia polyisoprenivorans Strain VH2. Appl Environ Microbiol 78:2874–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiessl S, Böse D, Oetermann S, Eggers J, Pietruszka J, Steinbüchel A (2014) Latex clearing protein—an oxygenase cleaving poly(cis-1,4-isoprene) rubber at the cis double bonds. Appl Environ Microbiol 80:5231–5240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holst O, Stenberg B, Christiansson M (1998) Biotechnological possibilities for waste tyre rubber treatment. Biodegradation 9:301–310

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim EMA, Arenskötter M, Luftmann H, Steinbüchel A (2006) Identification of poly(cis-1,4-isoprene) degradation intermediates during growth of moderately thermophilic actinomycetes on rubber and cloning of a functional lcp homologue from Nocardia farcinica strain E1. Appl Environ Microbiol 72(5):3375–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kan T, Strezov V, Evans T (2017) Fuel production from pyrolysis of natural and synthetic rubbers. Fuel 191:403–410

    Article  CAS  Google Scholar 

  • Nadarajah M, Irimanne ASLT, Oomarasamy AC, Kasinathan S (1971) Some naturally occurring antioxidants in Hevea Brasiliensis Latex. Q Jl Rubb Ret Inil Ceylon 48:202–211

    CAS  Google Scholar 

  • Nowaczyk K, Domak F (1999) Attempts at microbiological utilization of rubber wastes. Pol J Environ Stud 8(2):101–106

    CAS  Google Scholar 

  • Onokpise O, Louime C (2012) The potential of the South American leaf blight as a biological agent. Sustainability 4:3151–3157

    Article  Google Scholar 

  • Pfennig N (1974) Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillaceae. Arch Microbiol 100:197–206

    Article  CAS  Google Scholar 

  • Rose K, Tenberge KB, Steinbüchel A (2004) Identification and characterization of genes from Streptomyces sp. strain K30 responsible for clear zone formation on natural rubber latex and poly(cis-1,4-isoprene) rubber degradation. Biomacromol 6:180–188

    Article  CAS  Google Scholar 

  • Schlegel HC, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Microbiol 38:209–222

    CAS  Google Scholar 

  • Schmitt G, Seiffert G, Kroneck PMH, Braaz R, Jendrossek D (2010) Spectroscopic properties of rubber oxygenase RoxA from Xanthomonas sp., a new type of dihaem dioxygenase. Microbiology (SGM) 156:2537–2548

    Article  CAS  Google Scholar 

  • Sofi A (2017) Effect of waste tyre rubber on mechanical and durability properties of concrete—a review. ASEJ. https://doi.org/10.1016/j.asej.2017.08.007

    Article  Google Scholar 

  • Tsuchii A, Takeda K (1990) Rubber-degrading enzyme from a bacterial culture. Appl Environ Microbiol 56(1):269–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchii A, Tokiwa Y (2005) Two-step cultivation method for microbial disintegration of tire rubber particles. J Polym Environ 13:75–80

    Article  CAS  Google Scholar 

  • Tsuchii A, Suzuki T, Takeda K (1985) Microbial degradation of natural rubber vulcanizates. Appl Environ Microbiol 50(4):965–970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warneke S, Arenskötter M, Tenberge KB, Steinbüchel A (2007) Bacterial degradation of poly(trans-1,4-isoprene (gutta percha). Microbiology (SGM) 153:347–356

    Article  CAS  Google Scholar 

  • http://www.statista.com. https://de.statista.com/statistik/daten/studie/200677/umfrage/weltweiter-verbrauch-von-natur-und-synthetischem-kautschuk-seit-1990/. Weltweiter Verbrauch von Natur- und synthetischem Kautschuk in den Jahren 1990 bis 2016 (2018)

  • Williams GR (1986) The biodeterioration of vulcanized rubbers. Int Biodeterior Biodegrad 22:307–311

    CAS  Google Scholar 

  • Yikmis M, Steinbüchel A (2012) Historical and recent achievements in the field of microbial degradation of natural and synthetic rubber. Appl Environ Microbiol 78(13):4543–4551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Vibracoustic GmbH and Freudenberg Technology Innovation SE & Co. KG for financial support and for providing the rubber additives for our studies on the impact of commonly used rubber chemicals on the microbial and enzymatic degradation of poly(cis-1,4-isoprene).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Steinbüchel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 719 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altenhoff, AL., de Witt, J., Andler, R. et al. Impact of additives of commercial rubber compounds on the microbial and enzymatic degradation of poly(cis-1,4-isoprene). Biodegradation 30, 13–26 (2019). https://doi.org/10.1007/s10532-018-9858-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-018-9858-5

Keywords

Navigation