, Volume 29, Issue 2, pp 141–157 | Cite as

Biodegradation of n-alkanes on oil–seawater interfaces at different temperatures and microbial communities associated with the degradation

  • Synnøve Lofthus
  • Roman Netzer
  • Anna S. Lewin
  • Tonje M. B. Heggeset
  • Tone Haugen
  • Odd Gunnar BrakstadEmail author
Original Paper


Oil biodegradation studies have mainly focused on microbial processes in dispersions, not specifically on the interfaces between the oil and the seawater in the dispersions. In this study, a hydrophobic adsorbent system, consisting of Fluortex fabrics, was used to investigate biodegradation of n-alkanes and microbial communities on oil–seawater interfaces in natural non-amended seawater. The study was performed over a temperature range from 0 to 20 °C, to determine how temperature affected biodegradation at the oil–seawater interfaces. Biodegradation of n-alkanes were influenced both by seawater temperature and chain-length. Biotransformation rates of n-alkanes decreased by reduced seawater temperature. Low rate coefficients at a seawater temperature of 0 °C were probably associated with changes in physical–chemical properties of alkanes. The primary bacterial colonization of the interfaces was predominated by the family Oceanospirillaceae at all temperatures, demonstrating the wide temperature range of these hydrocarbonoclastic bacteria. The mesophilic genus Oleibacter was predominant at the seawater temperature of 20 °C, and the psychrophilic genus Oleispira at 5 and 0 °C. Upon completion of n-alkane biotransformation, other oil-degrading and heterotrophic bacteria became abundant, including Piscirickettsiaceae (Cycloclasticus), Colwelliaceae (Colwellia), Altermonadaceae (Altermonas), and Rhodobacteraceae. This is one of a few studies that describe the biodegradation of oil, and the microbial communities associated with the degradation, directly at the oil–seawater interfaces over a large temperature interval.


Biodegradation n-Alkanes Seawater Temperature Oil–seawater interfaces Microbial communities 16S rDNA amplicon sequencing 



This study was financed by the Norwegian Research Council (project # 200491/E30) and the SINTEF Strategic Institute Project “Technology Platform – Functional Metagenomics”. We will thank Kristin Bonaunet, Marianne U. Rønsberg, Inger Steinsvik, and Lisbet I.R. Støen for their assistance with sampling and chemical analyses.

Supplementary material

10532_2018_9819_MOESM1_ESM.docx (508 kb)
Supplementary material 1 (DOCX 507 kb)


  1. Bælum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemla M, Bill M, Conrad ME, Malfatti SA, Tringe SG, Holman HY, Hazen TC, Jansson JK (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environ Microbiol 14:2405–2416. CrossRefPubMedGoogle Scholar
  2. Bagi A, Pampanin DM, Brakstad OG, Kommedal R (2013) Estimation of hydrocarbon biodegradation rates in marine environments: a critical review of the Q10 approach. Mar Environ Res 89:83–90. CrossRefPubMedGoogle Scholar
  3. Bagi A, Pampanin DM, Lanzen A, Bilstad T, Kommedal R (2014) Naphthalene biodegradation in temperate and arctic marine microcosms. Biodegradation 25:111–125. CrossRefPubMedGoogle Scholar
  4. Baldi F, Ivosevic N, Minacci A, Pepi M, Fani R, Svetlicic V, Zutic V (1999) Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl Environ Microbiol 65:2041–2048PubMedPubMedCentralGoogle Scholar
  5. Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078PubMedPubMedCentralGoogle Scholar
  6. Brakstad OG, Bonaunet K (2006) Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0-5 degrees C) and bacterial communities associated with degradation. Biodegradation 17:71–82. CrossRefPubMedGoogle Scholar
  7. Brakstad OG, Lodeng AGG (2005) Microbial diversity during biodegradation of crude oil in seawater from the North Sea. Microb Ecol 49:94–103. CrossRefPubMedGoogle Scholar
  8. Brakstad OG, Faksness L, Melbye A (2002) Depletion of compounds from thin oil films in seawater. In: 25th Arctic and marine oilspill program (AMOP) technical seminar, Calgary, Canada, 11–13 June 2002, pp 912–940Google Scholar
  9. Brakstad OG, Bonaunet K, Nordtug T, Johansen Ø (2004) Biotransformation and dissolution of petroleum hydrocarbons in natural flowing seawater at low temperature. Biodegradation 15:337–346CrossRefPubMedGoogle Scholar
  10. Brakstad OG, Nonstad I, Faksness LG, Brandvik PJ (2008) Responses of microbial communities in Arctic sea ice after contamination by crude petroleum oil. Microbl Ecol 55:540–552. CrossRefGoogle Scholar
  11. Brakstad OG, Daling PS, Faksness LG, Almas IK, Vang SH, Syslak L, Leirvik F (2014) Depletion and biodegradation of hydrocarbons in dispersions and emulsions of the Macondo 252 oil generated in an oil-on-seawater mesocosm flume basin. Mar Pollut Bull 84:125–134. CrossRefPubMedGoogle Scholar
  12. Brakstad OG, Nordtug T, Throne-Hoist M (2015a) Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes. Mar Pollut Bull 93:144–152. CrossRefPubMedGoogle Scholar
  13. Brakstad OG, Throne-Holst M, Netzer R, Stoeckel DM, Atlas RM (2015b) Microbial communities related to biodegradation of dispersed Macondo oil at low seawater temperature with Norwegian coastal seawater. Microb Biotechnol 8:989–998CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brandvik PJ (1997) Optimisation of oil spill dispersants on weathered oils: a new approach using experimental design and multivariate data analysis. Dissertion, Norwegian University of Science and Technology, NTNU, Department of Chemistry, Faculty of Chemistry and Biology, Trondheim, NorwayGoogle Scholar
  15. Brandvik PJ, Faksness LG (2009) Weathering processes in Arctic oil spills: meso-scale experiments with different ice conditions. Cold Reg Sci Technol 55:160–166. CrossRefGoogle Scholar
  16. Camilli R, Reddy CM, Yoerger DR, Van Mooy BAS, Jakuba MV, Kinsey JC, McIntyre CP, Sylva SP, Maloney JV (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330:201–204. CrossRefPubMedGoogle Scholar
  17. Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9:177–186. CrossRefPubMedGoogle Scholar
  18. Daling PS, Leirvik F, Almas IK, Brandvik PJ, Hansen BH, Lewis A, Reed M (2014) Surface weathering and dispersibility of MC252 crude oil. Mar Pollut Bull 87:300–310. CrossRefPubMedGoogle Scholar
  19. Deppe U, Richnow HH, Michaelis W, Antranikian G (2005) Degradation of crude oil by an arctic microbial consortium. Extremophiles 9:461–470. CrossRefPubMedGoogle Scholar
  20. Douglas GS, Bence AE, Prince RC, McMillen SJ, Butler EL (1996) Environmental stability of selected petroleum hydrocarbon source and weathering ratios. Environ Sci Technol 30:2332–2339. CrossRefGoogle Scholar
  21. Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, Mason OU, Piceno YM, Reid FC, Stringfellow WT, Tom LM, Hazen TC, Andersen GL (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Sci Technol 47:10860–10867. CrossRefPubMedGoogle Scholar
  22. Dutta TK, Harayama S (2001) Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp strain MBIC 4326. Appl Environ Microbiol 67:1970–1974. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov, sp. nov, an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123CrossRefPubMedGoogle Scholar
  24. Faksness LG, Brandvik PJ, Sydnes LK (2008) Composition of the water accommodated fractions as a function of exposure times and temperatures. Mar Pollut Bull 56:1746–1754. CrossRefPubMedGoogle Scholar
  25. Geiselbrecht AD, Hedlund BP, Tichi MA, Staley JT (1998) Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains. Appl Environ Microbiol 64:4703–4710PubMedPubMedCentralGoogle Scholar
  26. Gentile G, Bonasera V, Amico C, Giuliano L, Yakimov MM (2003) Shewanella sp. GA-22, a psychrophilic hydrocarbonoclastic antarctic bacterium producing polyunsaturated fatty acids. J Appl Microbiol 95:1124–1133. CrossRefPubMedGoogle Scholar
  27. Gerdes B, Brinkmeyer R, Dieckmann G, Helmke E (2005) Influence of crude oil on changes of bacterial communities in Arctic sea-ice. FEMS Microbiol Ecol 53:129–139. CrossRefPubMedGoogle Scholar
  28. Golyshin PN, Dos Santos VAPM, Kaiser O, Ferrer M, Sabirova YS, Lunsdorf H, Chernikova TN, Golyshina OV, Yakimov MM, Puhler A, Timmis KN (2003) Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. J Biotechnol 106:215–220. CrossRefPubMedGoogle Scholar
  29. Golyshin PN, Ferrer M, Chernikova TN, Golyshina OV, Yakimov MM (2010) Oleispira. In: Timmis K (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, pp 1755–1763.
  30. Greimann D, Zohn A, Plourde K, Reilly T (1995) Teflon nets: a novel approach to thin film oil sampling. International Oil Spill Conference Proceedings 1995(1):882–883. CrossRefGoogle Scholar
  31. Gutierrez T, Singleton DR, Berry D, Yang T, Aitken MD, Teske A (2013) Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP. ISME J 7:2091–2104. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hara A, Syutsubo K, Harayama S (2003) Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753. CrossRefPubMedGoogle Scholar
  33. Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214. CrossRefPubMedGoogle Scholar
  34. Haus F, German J, Junter GA (2001) Primary biodegradability of mineral base oils in relation to their chemical and physical characteristics. Chemosphere 45:983–990CrossRefPubMedGoogle Scholar
  35. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman HYN, Osman S, Lu ZM, Van Nostrand JD, Deng Y, Zhou JZ, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208. CrossRefPubMedGoogle Scholar
  36. Hazen TC, Prince RC, Mahmoudi N (2016) Marine oil biodegradation. Environ Sci Technol 50:2121–2129CrossRefPubMedGoogle Scholar
  37. Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nature Rev Microbiol 4:173–182. CrossRefGoogle Scholar
  38. Jin HM, Kim JM, Lee HJ, Madsen EL, Jeon CO (2012) Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. Environ Sci Technol 46:7731–7740. CrossRefPubMedGoogle Scholar
  39. Johansen O, Rye H, Cooper C (2003) DeepSpill—field study of a simulated oil and gas blowout in deep water. Spill Sci Technol Bull 8:433–443. CrossRefGoogle Scholar
  40. Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. App Environ Microbiol 68:5625–5633. CrossRefGoogle Scholar
  41. Kasai Y, Shindo K, Harayama S, Misawa N (2003) Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5. Appl Environ Microbiol 69:6688–6697CrossRefPubMedPubMedCentralGoogle Scholar
  42. King G, Kostka J, Hazen T, Sobecky P (2015) Microbial responses to the Deepwater Horizon oil spill: from coastal wetlands to the deep sea. Ann Rev Mar Sci 7:377–401CrossRefPubMedGoogle Scholar
  43. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1. CrossRefPubMedGoogle Scholar
  44. Li S, Huang J, Chen Z, Chen G, Lai Y (2017) A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A 5:31–55. CrossRefGoogle Scholar
  45. Marshall KC, Cruickshank RH (1973) Cell surface hydrophobicity and the orientation of certain bacteria at interfaces. Arch Mikrobiol 91:29–40CrossRefPubMedGoogle Scholar
  46. Mason OU, Hazen TC, Borglin S, Chain PSG, Dubinsky EA, Fortney JL, Han J, Holman HYN, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou JH, Rubin EM, Jansson JK (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6:1715–1727. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mason OU, Han J, Woyke T, Jansson JK (2014) Single-cell genomics reveals features of a Colwellia species that was dominant during the Deepwater Horizon oil spill. Front Microbiol 5:332. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Massana R, Murray AE, Preston CM, DeLong EF (1997) Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl Environ Microbiol 63:50–56PubMedPubMedCentralGoogle Scholar
  49. McFarlin KM, Prince RC, Perkins R, Leigh MB (2014) Biodegradation of dispersed oil in Arctic seawater at −1 degrees C. PLoS ONE 9(1):e84297. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s ribosomal RNA. Appl Environ Microbiol 59:695–700PubMedPubMedCentralGoogle Scholar
  51. NASA Goddard Space Flight Center OEL, Ocean Biology Processing Group (2013) Moderate resolution Imaging spectroradiometer (MODIS) Terra temperature (11µ daytime) ocean color data. NASA OB.DAAC.
  52. North EW, Adams EE, Schlag Z, Sherwood CR, He R, Hyun KH, Socolofsky SA (2011) Simulating oil droplet dispersal from the Deepwater Horizon spill with a Lagrangian approach. Geophys Monogr Ser 195:217–226Google Scholar
  53. NRC (1985) Oil in the Sea. Inputs, fates, and effects, vol 1. National Academy Press, WashingtonGoogle Scholar
  54. Oh YS, Sim DS, Kim SJ (2001) Effects of nutrients on crude oil biodegradation in the upper intertidal zone. Mar Pollut Bull 42:1367–1372. CrossRefPubMedGoogle Scholar
  55. Oudot J, Merlin FX, Pinvidic P (1998) Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Mar Environ Res 45:113–125. CrossRefGoogle Scholar
  56. Perry J (1984) Microbial metabolism of cyclic alkanes. In: Atlas RM (ed) Petroleum microbiology. Macmillan Publ Co, New York, pp 61–98Google Scholar
  57. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora1. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  58. Powell SM, Bowman JP, Snape I (2004) Degradation of nonane by bacteria from Antarctic marine sediment. Polar Biol 27:573–578. CrossRefGoogle Scholar
  59. Prince RC, McFarlin KM, Butler JD, Febbo EJ, Wang FCY, Nedwed TJ (2013) The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90:521–526. CrossRefPubMedGoogle Scholar
  60. Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. PNAS 109:20292–20297. CrossRefPubMedGoogle Scholar
  61. Reed M, Daling PS, Brakstad OG, Singsaas I, Faksness L-G, Hetland B, Ekrol N (2000) OSCAR2000: a multi-component 3-dimensional oil spill contingency and response model. In: Proceedings of the 23d Arctic and marine oilspill program (AMOP) technical seminar. June 14–16 2000, Vancouver BC, Canada, pp 99–122Google Scholar
  62. Rosenberg M, Rosenberg E (1981) Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. J Bacteriol 148:51–57PubMedPubMedCentralGoogle Scholar
  63. Sambrook J, Russell WD (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  64. Schneiker S, dos Santos VAPM, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Puhler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorholter FJ, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nature Biotechnol 24:997–1004. CrossRefGoogle Scholar
  65. Southam G, Whitney M, Knickerbocker C (2001) Structural characterization of the hydrocarbon degrading bacteria-oil interface: implications for bioremediation. Int Biodeterior Biodegr 47:197–201. CrossRefGoogle Scholar
  66. Teramoto M, Ohuchi M, Hatmanti A, Darmayati Y, Widyastuti Y, Harayama S, Fukunaga Y (2011) Oleibacter marinus gen. nov., sp. nov., a bacterium that degrades petroleum aliphatic hydrocarbons in a tropical marine environment. Int J Syst Evolut Microbiol 61:375–380. CrossRefGoogle Scholar
  67. Teske A, Wawer C, Muyzer G, Ramsing NB (1996) Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol 62:1405–1415PubMedPubMedCentralGoogle Scholar
  68. Valentine DL, Mezic I, Macesic S, Crnjaric-Zic N, Ivic S, Hogan PJ, Fonoberov VA, Loire S (2012) Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. PNAS 109:20286–20291. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Van Stempvoort D, Biggar K (2008) Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: a review. Cold Reg Sci Technol 53:16–41. CrossRefGoogle Scholar
  70. Varrone C, Heggeset TMB, Le SB, Haugen T, Markussen S, Skiadas IV, Gavala HN (2015) Comparison of different strategies for selection/adaptation of mixed microbial cultures able to ferment crude glycerol derived from second generation biodiesel. Biomed Res Int. PubMedPubMedCentralGoogle Scholar
  71. Venosa AD, Holder EL (2007) Biodegradability of dispersed crude oil at two different temperatures. Mar Pollut Bull 54:545–553. CrossRefPubMedGoogle Scholar
  72. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wang B, Lai Q, Cui Z, Tan T, Shao Z (2008) A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environ Microbiol 10:1948–1963CrossRefPubMedGoogle Scholar
  74. Wang J, Sandoval K, Ding Y, Stoeckel D, Minard-Smith A, Andersen G, Dubinsky EA, Atlas R, Gardinali P (2016) Biodegradation of dispersed Macondo crude oil by indigenous Gulf of Mexico microbial communities. Sci Tot Environ 557:453–468CrossRefGoogle Scholar
  75. Wehrle J, Fischer EC, Kenney WP, Korczynski JF, Gracik TD, Howell BF, Klemens W (1998) Spinning filter separation system for oil spill clean-up operation. US Patent US5792351 AGoogle Scholar
  76. Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348CrossRefPubMedGoogle Scholar
  77. Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Golyshin PN (2003) Oleispira antarctica gen. nov., sp nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evolut Microbiol 53:779–785. CrossRefGoogle Scholar
  78. Yakimov MM, Gentile G, Bruni V, Cappello S, D’Auria G, Golyshin PN, Giuliano L (2004) Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol Ecol 49:419–432. CrossRefPubMedGoogle Scholar
  79. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department Biotechnology and Food ScienceNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department Environment and New ReseourcesSINTEF OceanTrondheimNorway
  3. 3.Department Biotechnology and NanomedicineSINTEF IndustryTrondheimNorway

Personalised recommendations