Skip to main content

Advertisement

Log in

The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Mercury resistant bacteria play a critical role in mercury biogeochemical cycling in that they convert methylmercury (MeHg) and inorganic mercury to elemental mercury, Hg(0). To date there are very few studies on the effects of speciation and bioavailability of MeHg in these organisms, and even fewer studies on the role that binding to cellular ligands plays on MeHg uptake. The objective of this study was to investigate the effects of thiol complexation on the uptake of MeHg by measuring the intracellular demethylation-reduction (transformation) of MeHg to Hg(0) in Hg-resistant bacteria. Short-term intracellular transformation of MeHg was quantified by monitoring the loss of volatile Hg(0) generated during incubations of bacteria containing the complete mer operon (including genes from putative mercury transporters) exposed to MeHg in minimal media compared to negative controls with non-mer or heat-killed cells. The results indicate that the complexes MeHgOH, MeHg-cysteine, and MeHg-glutathione are all bioavailable in these bacteria, and without the mer operon there is very little biological degradation of MeHg. In both Pseudomonas stutzeri and Escherichia coli, there was a pool of MeHg that was not transformed to elemental Hg(0), which was likely rendered unavailable to Mer enzymes by non-specific binding to cellular ligands. Since the rates of MeHg accumulation and transformation varied more between the two species of bacteria examined than among MeHg complexes, microbial bioavailability, and therefore microbial demethylation, of MeHg in aquatic systems likely depends more on the species of microorganism than on the types and relative concentrations of thiols or other MeHg ligands present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aschner M, Aschner JL (1990) Mercury neurotoxicity: mechanisms of blood-brain barrier transport. Neurosci Biobehav Rev 14:169–176

    Article  PubMed  CAS  Google Scholar 

  • Ask K, Akesson A, Berglund M, Vahter M (2002) Inorganic mercury and methylmercury in placentas of Swedish women. Environ Health Perspect 110:523–526

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bakir F, Rustam H, Tikriti S, Al-Damluji SF, Shihristani H (1980) Clinical and epidemiological aspects of methylmercury poisoning. Postgrad Med J 56:1–10

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  PubMed  CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Mason RP (2001) Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3). Appl Environ Microbiol 67:51–58

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Berthon G (1995) Critical evaluation of the stability constants of metal complexes of amino acids with polar side chains (Technical Report). Pure Appl Chem 67:1117–1240

    Article  CAS  Google Scholar 

  • Bjerregaard P (1996) Cardiovascular disease and environmental pollutants: the Arctic aspect. Arctic Med Res 55(Suppl 1):25–31

    PubMed  Google Scholar 

  • Chien MF, Narita M, Lin KH, Matsui K, Huang CC, Endo G (2010) Organomercurials removal by heterogeneous merB genes harboring bacterial strains. J Biosci Bioeng 110:94–98

    Article  PubMed  CAS  Google Scholar 

  • Colombo MJ, Ha J, Reinfelder JR, Barkay T, Yee N (2013) Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricans ND132. Geochim Cosmochim Acta 112:166–177

    Article  CAS  Google Scholar 

  • Colombo MJ, Ha J, Reinfelder JR, Barkay T, Yee N (2014) Oxidation of Hg(0) to Hg(II) by diverse anaerobic bacteria. Chem Geol 363:334–340

    Article  CAS  Google Scholar 

  • Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    PubMed  CAS  PubMed Central  Google Scholar 

  • Deng G, Zhang T, Yang L, Wang Q (2013) Studies of biouptake and transformation of mercury by a typical unicellular diatom Phaeodactylum tricornutum. Chin Sci Bull 58:256–265

    Article  CAS  Google Scholar 

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • EPA (2002) Method 1631, revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry United States Environmental Protection Agency, Office of Water

  • Feyte S, Tessier A, Gobeil C, Cossa D (2010) In situ adsorption of mercury, methylmercury and other elements by iron oxyhydroxides and organic matter in lake sediments. Appl Geochem 25:984–995

    Article  CAS  Google Scholar 

  • Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662

    Article  PubMed  CAS  Google Scholar 

  • Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72:457–464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gilmour CC, Elias DA, Kucken AM, Brown SD, Palumbo AV, Schadt CW, Wall JD (2011) Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 77:3938–3951

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gu B, Bian Y, Miller CL, Dong W, Jiang X, Liang L (2011) Mercury reduction and complexation by natural organic matter in anoxic environments. Proc Natl Acad Sci USA 108:1479–1483

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harada M (1978) Congenital Minamata disease: intrauterine methylmercury poisoning. Teratology 18:285–288

    Article  PubMed  CAS  Google Scholar 

  • Helmann JD, Ballard BT, Walsh CT (1990) The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science 247:946–948

    Article  PubMed  CAS  Google Scholar 

  • Lawson N, Mason RP (1998) Accumulation of mercury in estuarine food chains. Biogeochemistry 40:235–247

    Article  CAS  Google Scholar 

  • Luengen AC, Fisher NS, Bergamaschi BA (2012) Dissolved organic matter reduces algal accumulation of methylmercury. Environ Toxicol Chem 31:1712–1719

    Article  PubMed  CAS  Google Scholar 

  • Mason R, Reinfelder JR, Morel FMM (1996) Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ Sci Technol 30:1835–1845

    Article  CAS  Google Scholar 

  • Miller JH (ed) (1972) Experiments in molecular genetics. Cold Spring Harbor, NY

  • Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566

    Article  Google Scholar 

  • Ndu U, Mason RP, Zhang H, Lin S, Visscher PT (2012) Effect of inorganic and organic ligands on the bioavailability of methylmercury as determined by using a mer-lux bioreporter. Appl Environ Microbiol 78:7276–7282

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ndu U, Barkay T, Mason RP, Traore Schartup A, Al-Farawati R, Liu J, Reinfelder J (2015) The use of a mercury biosensor to evaluate the bioavailability of mercury-thiol complexes and mechanisms of mercury uptake in bacteria. PLoS ONE 10(9):e0138333. doi:10.1371/journal.pone.0138333

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabenstein DL (1978) The aqueous solution chemistry of methylmercury and its complexes. Acc Chem Res 11:100–107

    Article  CAS  Google Scholar 

  • Rasmussen LD, Turner RR, Barkay T (1997) Cell-density-dependent sensitivity of a mer-lux bioassay. Appl Environ Microbiol 63:3291–3293

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reniero D, Galli E, Barbieri P (1995) Cloning and comparison of mercury- and organomercurial-resistance determinants from a Pseudomonas stutzeri plasmid. Gene 166:77–82

    Article  PubMed  CAS  Google Scholar 

  • Reniero D, Mozzon E, Galli E, Barbieri P (1998) Two aberrant mercury resistance transposons in the Pseudomonas stutzeri plasmid. pPB. Gene 208:37–42

    Article  PubMed  CAS  Google Scholar 

  • Schaefer JK, Morel FMM (2009) High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat Geosci 2:123–126

    Article  CAS  Google Scholar 

  • Schartup AT, Mason RP, Balcom PH, Hollweg TA, Chen CY (2013) Methylmercury production in estuarine sediments: role of organic matter. Environ Sci Technol 47:695–700

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Selifonova O, Burlage R, Barkay T (1993) Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol 59:3083–3090

    PubMed  CAS  PubMed Central  Google Scholar 

  • Skyllberg U (2008) Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production. J Geophys Res 113:G00C03. doi:10.1029/2008JG000745

  • Smith T, Pitts K, McGarvey JA, Summers AO (1998) Bacterial oxidation of mercury metal vapor Hg(0). Appl Environ Microbiol 64:1328–1332

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sone Y, Pan-Hou H, Nakamura R, Sakabe K, Kiyono M (2010) Roles played by MerE and MerT in the transport of inorganic and organic mercury compounds in gram-negative bacteria. J Health Sci 56:123–127

    Article  Google Scholar 

  • Summers AO (1992) Untwist and shout: a heavy metal-responsive transcriptional regulator. J Bacteriol 174:3097–3101

    PubMed  CAS  PubMed Central  Google Scholar 

  • Watras CJ, Bloom NS (1992) Mercury and methylmercury in individual zooplankton: Implications for bioaccumulation. Limnol Oceanogr 37:1313–1318

    Article  Google Scholar 

  • Yamamoto M, Hou H, Nakamura K, Yasutake A, Fujisaki T, Nakano A (1995) Stimulation of elemental mercury oxidation by SH compounds. Bull Environ Contam Toxicol 54:409–413

    PubMed  CAS  Google Scholar 

  • Yu RQ, Reinfelder JR, Hines ME, Barkay T (2013) Mercury methylation by the methanogen Methanospirillum hungatei. Appl Environ Microbiol. doi:10.1128/AEM.01556-13:

    Google Scholar 

  • Zhang J, Wang F, House JD, Page B (2004) Thiols in wetland interstitial waters and their role in mercury and methylmercury speciation. Limnol Oceanogr 49:2276–2286

    Article  CAS  Google Scholar 

  • Zheng W, Liang L, Gu B (2012) Mercury reduction and oxidation by reduced natural organic matter in anoxic environments. Environ Sci Technol 46:292–299

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Lin H, Mann BF, Liang L, Gu B (2013) Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions. Environ Sci Technol 47:12827–12834

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank G. Endo for providing bacterial strains. This project was supported by grants from NSF-EAR (Geobiology & Low Temperature Geochemistry, EAR-0952291) and the U.S. Department of Energy, Office of Science (BER, DE-SC0007051), and a Hatch/McIntyre-Stennis grant through the New Jersey Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udonna Ndu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndu, U., Barkay, T., Schartup, A.T. et al. The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria. Biodegradation 27, 29–36 (2016). https://doi.org/10.1007/s10532-015-9752-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-015-9752-3

Keywords

Navigation