, Volume 26, Issue 6, pp 475–482 | Cite as

Biological reduction of uranium coupled with oxidation of ammonium by Acidimicrobiaceae bacterium A6 under iron reducing conditions

  • Emily R. Gilson
  • Shan Huang
  • Peter R. JafféEmail author
Original Paper


This study investigated the possibility of links between the biological immobilization of uranium (U) and ammonium oxidation under iron (Fe) reducing conditions. The recently-identified Acidimicrobiaceae bacterium A6 (ATCC, PTA-122488) derives energy from ammonium oxidation coupled with Fe reduction. This bacterium has been found in various soil and wetland environments, including U-contaminated wetland sediments. Incubations of Acidimicrobiaceae bacteria A6 with nontronite, an Fe(III)-rich clay, and approximately 10 µM U indicate that these bacteria can use U(VI) in addition to Fe(III) as an electron acceptor in the presence of ammonium. Measurements of Fe(II) production and ammonium oxidation support this interpretation. Concentrations of approximately 100 µM U were found to entirely inhibit Acidimicrobiaceae bacteria A6 activity. These results suggest that natural sites of active ammonium oxidation under Fe reducing conditions by Acidimicrobiaceae bacteria A6 could be hotspots of U immobilization by bioreduction. This is the first report of biological U reduction that is not coupled to carbon oxidation.


Bioreduction Nontronite Feammox Uranium Acidimicrobiaceae bacterium A6 Ammonium 



This research was supported through contract DE-SC0006847 by the Subsurface Biogeochemical Research Program of the U.S. Department of Energy’s Office of Biological and Environmental Research.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10532_2015_9749_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)


  1. Anderson RT et al (2003) Stimulating the In Situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microb 69:5884–5891. doi: 10.1128/AEM.69.10.5884-5891.2003 CrossRefGoogle Scholar
  2. Barlett M et al (2012) Uranium reduction and microbial community development in response to stimulation with different electron donors. Biodegradation 23:535–546. doi: 10.1007/s10532-011-9531-8 CrossRefPubMedGoogle Scholar
  3. Bassin JP, Pronk M, Kraan R, Kleerebezem R, van Loosdrecht MCM (2011) Ammonium adsorption in aerobic granular sludge, activated sludge and anammox granules. Water Res 45:5257–5265. doi: 10.1016/j.watres.2011.07.034 CrossRefPubMedGoogle Scholar
  4. Chang HS et al (2014) Uranium immobilization in an iron-rich rhizosphere of a native wetland plant from the Savannah River Site under reducing conditions. Environ Sci Technol 48:9270–9278. doi: 10.1021/Es5015136 CrossRefPubMedGoogle Scholar
  5. Clement JC, Shrestha J, Ehrenfeld JG, Jaffe PR (2005) Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol Biochem 37:2323–2328. doi: 10.1016/j.soilbio.2005.03.027 CrossRefGoogle Scholar
  6. Dong H, Jaisi DP, Kim J, Zhang G (2009) Microbe-clay mineral interactions. Am Mineral 94:1505–1519CrossRefGoogle Scholar
  7. Hsi CKD, Langmuir D (1985) Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model. Geochim Cosmochim Ac 49:1931–1941CrossRefGoogle Scholar
  8. Huang S, Jaffe PR (2015) Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions. Biogeosciences 12:769–779CrossRefGoogle Scholar
  9. Huang S, Ruiz-Uriguen M, Jaffe PR (2015) Ammonium oxidation under iron reducing conditions: environmental factors characterization and process optimization. Geophys Res Abstr 17:8006Google Scholar
  10. Keeling JL, Raven MD, Gates WP (2000) Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley Graphite Mine. South Aust Clay Clay Miner 48:537–548. doi: 10.1346/Ccmn.2000.0480506 CrossRefGoogle Scholar
  11. Komlos J, Jaffe PR (2004) Effect of iron bioavailability on dissolved hydrogen concentrations during microbial iron reduction. Biodegradation 15:315–325. doi: 10.1023/B:BIOD.0000042187.31072.60 CrossRefPubMedGoogle Scholar
  12. Komlos J, Moon HS, Jaffe PR (2008) Effect of sulfate on the simultaneous bioreduction of iron and uranium. J Environ Qual 37:2058–2062. doi: 10.2134/jeq.2007.0665 CrossRefPubMedGoogle Scholar
  13. Kurttio P et al (2002) Renal effects of uranium in drinking water. Environ Health Persp 110:337–342CrossRefGoogle Scholar
  14. Kurttio P, Komulainen H, Leino A, Salonen L, Auvinen A, Saha H (2005) Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environ Health Persp 113:68–72CrossRefGoogle Scholar
  15. Leggett RW, Pellmar TC (2003) The biokinetics of uranium migrating from embedded DU fragments. J Environ Radioact 64:205–225. doi: 10.1016/S0265-931x(02)00050-4 CrossRefPubMedGoogle Scholar
  16. Li D et al (2014) Retention and chemical speciation of uranium in an oxidized wetland sediment from the Savannah River Site. J Environ Radioact 131:40–46. doi: 10.1016/j.jenvrad.2013.10.017 CrossRefPubMedGoogle Scholar
  17. Liu D et al (2011) Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochim Cosmochim Act 75:1057–1071. doi: 10.1016/j.gca.2010.11.009 CrossRefGoogle Scholar
  18. Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416. doi: 10.1038/350413a0 CrossRefGoogle Scholar
  19. Morrison SJ, Spangler RR, Tripathi VS (1995) Adsorption of uranium(VI) on amorphous ferric oxyhydroxide at high-concentrations of dissolved carbon(IV) and sulfur(VI). J Contam Hydrol 17:333–346. doi: 10.1016/0169-7722(94)00039-K CrossRefGoogle Scholar
  20. Nielsen PH (1996) Adsorption of ammonium to activated sludge. Water Res 30:762–764. doi: 10.1016/0043-1354(95)00222-7 CrossRefGoogle Scholar
  21. Orellana R, Hixson KK, Murphy S, Mester T, Sharma ML, Lipton MS, Lovley DR (2014) Proteome of Geobacter sulfurreducens in the presence of U(VI). Microbiology 160:2607–2617. doi: 10.1099/mic.0.081398-0 CrossRefPubMedGoogle Scholar
  22. Sanford RA, Wu Q, Sung Y, Thomas SH, Amos BK, Prince EK, Loffler FE (2007) Hexavalent uranium supports growth of Anaeromyxobacter dehalogenans and Geobacter spp. with lower than predicted biomass yields. Environ Microbiol 9:2885–2893. doi: 10.1111/j.1462-2920.2007.01405.x CrossRefPubMedGoogle Scholar
  23. Sani RK, Peyton BM, Dohnalkova A (2006) Toxic effects of uranium on Desulfovibrio desulfuricans G20. Environ Toxicol Chem 25:1231–1238CrossRefPubMedGoogle Scholar
  24. Sawayama S (2006) Possibility of anoxic ferric ammonium oxidation. J Biosci Bioeng 101:70–72. doi: 10.1263/jbb.101.70 CrossRefPubMedGoogle Scholar
  25. Senko JM, Istok JD, Suflita JM, Krumholz LR (2002) In-situ evidence for uranium immobilization and remobilization. Environ Sci Technol 36:1491–1496. doi: 10.1021/Es011240x CrossRefPubMedGoogle Scholar
  26. Sharp JO et al (2011) Uranium speciation and stability after reductive immobilization in aquifer sediments. Geochim Cosmochim Act 75:6497–6510. doi: 10.1016/j.gca.2011.08.022 CrossRefGoogle Scholar
  27. Shrestha J, Rich JJ, Ehrenfeld JG, Jaffe PR (2009) Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils: laboratory, field demonstrations, and push-pull rate determination. Soil Sci 174:156–164. doi: 10.1097/SS.0b013e3181988fbf CrossRefGoogle Scholar
  28. Stults JR, Snoeyenbos-West O, Methe B, Lovley DR, Chandler DP (2001) Application of the 5‘ fluorogenic exonuclease assay (TaqMan) for quantitative ribosomal DNA and rRNA analysis in sediments. Appl Environ Microb 67:2781–2789. doi: 10.1128/Aem.67.6.2781-2789.2001 CrossRefGoogle Scholar
  29. Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5’-nuclease assays. Appl Environ Microb 66:4605–4614. doi: 10.1128/Aem.66.11.4605-4614.2000 CrossRefGoogle Scholar
  30. Wallace S, Austin D (2008) Emerging models for nitrogen removal in treatment wetlands. J Environ Health 71:10–16PubMedGoogle Scholar
  31. Yang WH, Weber KA, Silver WL (2012) Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat Geosci 5:538–541. doi: 10.1038/Ngeo1530 CrossRefGoogle Scholar
  32. Zhang GX, Senko JM, Kelly SD, Tan H, Kemner KM, Burgos WD (2009) Microbial reduction of iron(III)-rich nontronite and uranium(VI). Geochim Cosmochim Act 73:3523–3538. doi: 10.1016/j.gca.2009.03.030 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Emily R. Gilson
    • 1
  • Shan Huang
    • 1
  • Peter R. Jaffé
    • 1
    Email author
  1. 1.Department of Civil and Environmental EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations