Skip to main content

Advertisement

Log in

Performance of an anaerobic, static bed, fixed film bioreactor for chlorinated solvent treatment

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Anaerobic, fixed film, bioreactors bioaugmented with a dechlorinating microbial consortium were evaluated as a potential technology for cost effective, sustainable, and reliable treatment of mixed chlorinated ethanes and ethenes in groundwater from a large groundwater recovery system. Bench- and pilot-scale testing at about 3 and 13,500 L, respectively, demonstrated that total chlorinated solvent removal to less than the permitted discharge limit of 100 μg/L. Various planned and unexpected upsets, interruptions, and changes demonstrated the robustness and reliability of the bioreactor system, which handled the operational variations with no observable change in performance. Key operating parameters included an adequately long hydraulic retention time for the surface area, a constant supply of electron donor, pH control with a buffer to minimize pH variance, an oxidation reduction potential of approximately −200 millivolts or lower, and a well-adapted biomass capable of degrading the full suite of chlorinated solvents in the groundwater. Results indicated that the current discharge criteria can be met using a bioreactor technology that is less complex and has less downtime than the sorption based technology currently being used to treat the groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aulenta F, Fina A, Potalivo M, Petrangeli PM, Rossetti S, Majone M (2005) Anaerobic transformation of tetachloroethane, perchloroethylene, and their mixtures by mixed-cultures enriched from contaminated soils and sediments. Water Sci Technol 52(1–2):357–362

    CAS  PubMed  Google Scholar 

  • Aulenta FP, Majone M, Petrangeli PM, Tandoi V (2006) Anaerobic bioremediation of groundwater containing a mixture of 1,1,2,2-tetrachloroethane and chloroethenes. Biodegradation 17:193–206

    Article  CAS  PubMed  Google Scholar 

  • Basu D, Asolekar SR (2012a) Evaluation of substrate removal kinetics of UASB reactors treating chlorinated ethanes. Environ Sci Pollut Res 19:2419–2427

    Article  CAS  Google Scholar 

  • Basu D, Asolekar SR (2012b) Effect of carbon sources on the removal of 1,1,2-trichloroethane and 1,1,2,2-tetrachloroethane in UASB reactor. J Environ Sci Health Part A 47(4):638–644

    Article  CAS  Google Scholar 

  • Basu D, Asolekar SR (2012c) Performance of UASB reactor in the biotreatment of 1,1,2-trichloroethane. J Environ Sci Health Part A 47(2):267–273

    Article  CAS  Google Scholar 

  • Basu D, Gupta SK (2010) Biodegradation of 1,1,2,2-tetrachloroethane in upflow anaerobic sludge blanket (UASB reactor. Bioresour Technol 101:21–25

    Article  CAS  PubMed  Google Scholar 

  • Benefield LD, Randall CW (1980) Biological process design for wastewater treatment. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Chen C, Puhakka JA, Ferguson KF (1996) Transformations of 1,1,2,2-tetrachloroethane under methanogenic conditions. Environ Sci Technol 30(2):542–547

    Article  CAS  Google Scholar 

  • Clement TP, Truex MJ, Lee P (2002) A case study for demonstrating the application of U.S. EPA’s monitored natural attenuation screening protocol at a hazardous waste site. J Contam Hydrol 59:133–162

    Article  CAS  PubMed  Google Scholar 

  • Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products and heavy metals. Appl Microbiol Biotechnol 97:9909–9921

    Article  CAS  PubMed  Google Scholar 

  • Ellis DE, Lutz EJ, Odom JM, Buchanan RJ Jr, Bartlett CL, Lee MD, Harkness MR, Deweerd KA (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ Sci Technol 34:2254–2260

    Article  CAS  Google Scholar 

  • Ferguson JF, Pietari JMH (2000) Anaerobic transformations and bioremediation of chlorinated solvents. Environ Pollut 107:209–215

    Article  CAS  PubMed  Google Scholar 

  • Frascari D, Cappelletti M, Fedi S, Zannoni D, Nocentini M, Pinelli D (2010) 1,1,2,2-Tetrachloroethane aerobic cometabolic biodegradation in slurry and soil-free bioreactors: a kinetic study. Biochem Eng 52:55–64

    Article  CAS  Google Scholar 

  • Frascari D, Giacomo B, Doria F, Bgosato A, Tavanaie N, Salviulo R, Ciavarelli R, Rinelli D, Fraraccio S, Zanaroli G, Fava R (2014) Development of an attached-growth process for the on-site bioremediation of an aquifer polluted by chlorinated solvents. Biodegradation 25:337–350

    Article  CAS  PubMed  Google Scholar 

  • Grady LCP Jr, Daigger GT, Love NG, Filipe CDM (2011) Biological wastewater treatment, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Hwu C-S, Lu C-J (2008) Continuous dechlorination of tetrachloroethene in an upflow anaerobic sludge blanket reactor. Biotechnol Lett 30:1589–1593

    Article  CAS  PubMed  Google Scholar 

  • Jones EJP, Voytek MA, Lorah MM, Kirshtein JD (2006) Characterization of a microbial consortium capable of rapid and simultaneous dechlorination of 1,1,2,2-tetrachloroethane and chlorinated ethane and ethene intermediates. Bioremediat J 10(4):153–168

    Article  CAS  Google Scholar 

  • Liu Y, Xu H-L, Yang S-F, Tay J-H (2003) Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res 37:661–673

    Article  CAS  PubMed  Google Scholar 

  • Lorah MM, Olsen LD (1999) Degradation of 1,1,2,2-tetrachloroethane in a freshwater tidal wetland: field and laboratory evidence. Environ Sci Technol 33:227–234

    Article  CAS  Google Scholar 

  • Lorah MM, Voytek MA (2004) Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: biogeochemical controls and associations with microbial communities. J Contam Hydrol 70:117–145

    Article  CAS  PubMed  Google Scholar 

  • Lorah MM, Majcher EH, Jones EJ, Voytek MA (2008) Microbial consortia development and microcosm and column experiments for enhanced bioremediation of chlorinated volatile organic compounds, west branch canal creek wetland area, Aberdeen Proving Ground, Maryland, U.S. Geological Survey Scientific Investigations Report 2007-5165. http://md.water.usgs.gov/publications/sir.html

  • Majcher EH, Phelan DJ, Lorah MM, and McGinty AL (2007) Characterization of preferential ground water seepage from a chlorinated hydrocarbon-contaminated aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland. U.S. Geological Survey Scientific Investigations Report 2006-5233

  • Majcher EH, Lorah MM, Phelan DJ, and McGinty AL (2009) Design and performance of an enhanced bioremediation pilot test in a tidal wetland seep, West Branch Canal Creek, Aberdeen Proving Ground, Maryland. U.S. Geological Survey Scientific Investigations Report 2009-5112, 70 p, plus appendices

  • Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116

    Article  CAS  PubMed  Google Scholar 

  • Manchester MJ, Hug LA, Zarek M, Zila A, Edwards EA (2012) Discovery of a trans-dichloroethene-respiring Delalogenimonas species in the 1,1,2,2-tetrachloroethane-dechlorinating WBC-2 consortium. Appl Environ Microbiol 78(15):5280–5287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mijaylova-Nacheva P, Canui-Chuil A (2006) Anaerobic biodegradation of chlorinated aliphatic compounds using packed bed reactors. Water Sci Technol 54(10):193–200

    Article  CAS  PubMed  Google Scholar 

  • Prakash SM, Gupta SK (2000) Biodegradation of tetrachloroethylene in upflow anaerobic sludge blanket reactor. Bioresour Technol 72:47–54

    Article  CAS  Google Scholar 

  • Rossetti S, Aulenta F, Majone M, Crocetti G, Tandoi V (2008) Structure analysis and performance of a microbial community from a contaminated aqjuifer involved in the complete reductive dechlorination of 1,1,2,2-tetrachloroethane to ethene. Biotechnol Bioeng 100(2):240–249

    Article  CAS  PubMed  Google Scholar 

  • Segar RL, Leung S-Y, Vivek SA (1997) Treatment of trichloroethene-contaminated water with a fluidized-bed bioreactor. Ann NY Acad Sci 829:83–96

    Article  PubMed  Google Scholar 

  • Sponza DT (2003) Enhancement of granule formation and sludge retainment for tetrachloroethylene (TCE) removal in an upflow anaerobic sludge blanket (UASB) reactor. Adv Environ Res 7:453–462

    Article  CAS  Google Scholar 

  • Stroo HF, Leeson A, Ward CH (2013) Bioaugmentation for groundwater remediation. Springer, New York

    Book  Google Scholar 

  • Tarr JA, McCurley J, McMichael FC, Yosie TF (1984) Water and wastes: a retrospective assessment of wastewater technology in the U. S. 1800–1932. Technol Cult 25(April):226–263

    Article  CAS  PubMed  Google Scholar 

  • U.S. EPA (2004) Primer for municipal wastewater treatment systems. EPA 832-R-04-001

  • U.S. EPA (2008) Emerging technologies for wastewater treatment and in-plant wet weather management. EPA 832-R-06-006

  • Vogel TM, Criddle CS, McCarty PL (1987) Transformations of halogenated aliphatic compounds. Environ Sci Technol 22(8):722–736

    Article  Google Scholar 

  • Wild RP, Winkelbauer W, Leisinger T (1995) Anaerobic dechlorination of trichloroethene, tetrachloroehene and 1,2-dichloroethane by an acetogenic mixed culture in a fixed-bed reactor. Biodegradation 6:309–318

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the U.S. Army for funding this study, and John Wrobel and Jeff Aichroth (Directorate of Public Works, Aberdeen Proving Ground, Maryland) for logistical support. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle M. Lorah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorah, M.M., Walker, C. & Graves, D. Performance of an anaerobic, static bed, fixed film bioreactor for chlorinated solvent treatment. Biodegradation 26, 341–357 (2015). https://doi.org/10.1007/s10532-015-9738-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-015-9738-1

Keywords

Navigation