Skip to main content
Log in

Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Agricultural soils are usually co-contaminated with organophosphate (OP) and pyrethroid pesticides. To develop a stable and marker-free Pseudomonas putida for co-expression of two pesticide-degrading enzymes, we constructed a suicide plasmid with expression cassettes containing a constitutive promoter J23119, an OP-degrading gene (mpd), a pyrethroid-hydrolyzing carboxylesterase gene (pytH) that utilizes the upp gene as a counter-selectable marker for upp-deficient P. putida. By introduction of suicide plasmid and two-step homologous recombination, both mpd and pytH genes were integrated into the chromosome of a robust soil bacterium P. putida KT2440 and no selection marker was left on chromosome. Functional expression of mpd and pytH in P. putida KT2440 was demonstrated by Western blot analysis and enzyme activity assays. Degradation experiments with liquid cultures showed that the mixed pesticides including methyl parathion, fenitrothion, chlorpyrifos, permethrin, fenpropathrin, and cypermethrin (0.2 mM each) were degraded completely within 48 h. The inoculation of engineered strain (106 cells/g) to soils treated with the above mixed pesticides resulted in a higher degradation rate than in noninoculated soils. All six pesticides could be degraded completely within 15 days in fumigated and nonfumigated soils with inoculation. Theses results highlight the potential of the engineered strain to be used for in situ bioremediation of soils co-contaminated with OP and pyrethroid pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Cai L, Yuan MQ, Liu F, Jian J, Chen GQ (2009) Enhanced production of medium-chain-length polyhydroxyalkanoates (PHA) by PHA depolymerase knockout mutant of Pseudomonas putida KT2442. Bioresour Technol 100:2265–2270

    Article  CAS  PubMed  Google Scholar 

  • Cho JH, Kim EK, So JS (1995) Improved transfomation of Pseudomonas putida KT2440 by electroporation. Biotechnol Tech 9:41–44

    Article  CAS  Google Scholar 

  • Cui ZL, Li SP, Fu GP (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922–4925

    Article  CAS  Google Scholar 

  • Dong YJ, Bartlam M, Sun L, Zhou YF, Zhang ZP, Zhang CG, Rao Z, Zhang XE (2005) Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J Mol Biol 353:655–663

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Urgel M, Kolter R, Ramos JL (2002) Root colonization by Pseudomonas putida: love at first sight. Microbiology 148:341–343

    CAS  PubMed  Google Scholar 

  • Fabret C, Ehrlich SD, Noirot P (2002) A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 46:25–36

    Article  CAS  PubMed  Google Scholar 

  • Goh YJ, Azcárate-Peril MA, O’Flaherty S, Durmaz E, Valence F, Jardin J, Lortal S, Klaenhammer TR (2009) Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM. Appl Environ Microbiol 75:3093–3105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graf N, Altenbuchner J (2011) Development of a method for markerless gene deletion in Pseudomonas putida. Appl Environ Microbiol 77:5549–5552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hannink N, Rosser SJ, French CE, Basran A, Murray JAH, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172

    Article  CAS  PubMed  Google Scholar 

  • Hernándeza AF, Parrónb T, Tsatsakisd AM, Requenab M, Alarcónc R, López-Guarnidoa O (2013) Toxic effects of pesticide mixtures at a molecular level: their relevance to human Health. Toxicology 307:136–145

    Article  Google Scholar 

  • Iyer R, Iken B, Damania A (2013) A comparison of organophosphate degradation genes and bioremediation applications. Environ Microbiol Rep 5:787–798

    Article  CAS  PubMed  Google Scholar 

  • Jackson CJ, Liu JW, Carr PD, Younus F, Coppin C, Meirelles T, Lethier M, Pandey G, Ollis DL, Russell RJ, Weik M, Oakeshott JG (2013) Structure and function of an insect α-carboxylesterase (αEsterase7) associated with insecticide resistance. Proc Natl Acad Sci USA 110:10177–10182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jacques RJ, Okeke BC, Bento FM, Teixeira AS, Peralba MC, Camargo FA (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Zhang R, Li R, Gu JD, Li S (2007) Simultaneous biodegradation of methyl parathion and carbofuran by a genetically engineered microorganism constructed by mini-Tn5 transposon. Biodegradation 18:403–412

    Article  CAS  PubMed  Google Scholar 

  • Keller KL, Bender KS, Wall JD (2009) Development of a markerless genetic exchange system for Desulfovibrio vulgaris Hildenborough and its use in generating a strain with increased transformation efficiency. Appl Environ Microbiol 75:7682–7691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kristich CJ, Manias DA, Dunny GM (2005) Development of a method for markerless genetic exchange in Enterococcus faecalis and its use in construction of a srtA mutant. Appl Environ Microbiol 71:5837–5849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler HP, Holliger C, Jackson C, Oakeshott JG (2010) Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lan WS, Gu JD, Zhang JL, Shen BC, Jiang H, Mulchandani A, Chen W, Qiao C (2006) Coexpression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium. Int Biodeterior Biodegrad 58:70–76

    Article  CAS  Google Scholar 

  • Lan WS, Lu TK, Qin ZF, Shi XJ, Wang JJ, Hu YF, Chen B, Zhu YH, Liu Z (2014) Genetically modified microorganism Spingomonas paucimobilis UT26 for simultaneously degradation of methyl-parathion and γ-hexachlorocyclohexane. Ecotoxicology 23:840–850

    Article  CAS  PubMed  Google Scholar 

  • Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:49–170

    CAS  PubMed  Google Scholar 

  • Liang RB, Liu JH (2010) Scarless and sequential gene modification in Pseudomonas using PCR product flanked by short homology regions. BMC Microbiol 10:209

    Article  PubMed Central  PubMed  Google Scholar 

  • Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, Fouts DE, Gill SR et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  PubMed  Google Scholar 

  • Ramos JL, Wasserfallen A, Rose K, Timmis KN (1987) Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science 235:593–596

    Article  CAS  PubMed  Google Scholar 

  • Reyrat J-M, Pelicic V, Gicquel B, Rappuoli R (1998) Counter-selectable markers: untapped tools for bacterial genetics and pathogenesis. Infect Immun 66:4011–4017

    PubMed Central  CAS  PubMed  Google Scholar 

  • Russell RJ, Scott C, Jackson CJ, Pandey R, Pandey G, Taylor MC, Coppin CW, Liu JW, Oakeshott JG (2011) The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects. Evol Appl 4:225–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sayler GS, Hooper SW, Layton AC, King JM (1990) Catabolic plasmids of environmental and ecological significance. Microb Ecol 19:1–20

    Article  CAS  PubMed  Google Scholar 

  • Schäfer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  • Shetty RP, Endy D, Knight TF (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Shimazu M, Mulchandani A, Chen W (2001) Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 76:318–324

    Article  CAS  PubMed  Google Scholar 

  • Shimazu M, Nuyen A, Mulchandani A, Chen W (2003) Cell surface display of organophosphorus hydrolase in Pseudomonas putida using ice nucleation protein anchor. Biotechnol Prog 19:1612–1614

    Article  CAS  PubMed  Google Scholar 

  • Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microb 7:156–164

    Article  CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Walker A, Morgan JAW, Wright DJ (2004) Biodegradation of chlorpyrifos by enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70:4855–4863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang BZ, Guo P, Hang BJ, Li L, He J, Li SP (2009) Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Appl Environ Microbiol 75:5496–5500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang C, Song C, Freudl R, Mulchandani A, Qiao C (2010) Twin-arginine translocation of methyl parathion hydrolase in Bacillus subtilis. Environ Sci Technol 44:7607–7612

    Article  CAS  PubMed  Google Scholar 

  • Zhang XZ, Yan X, Cui ZL, Hong Q, Li SP (2006) mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Res 34:e71

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from National Key Basic Research Program of China (No. 2012CB725204), National High Technology Research and Development Program of China (No. 2013AA06A210), National Natural Science Foundation of China (Nos. 31300032, 31470213 and 31170030), Project of Tianjin, China (Nos. 13JCQNJC09700, 13JCZDJC27800 and 20140609), Open Fund of State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University (No. MMLKF13-06), and Open Fund of State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (No. SKLMR-20130604).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruihua Liu, Cunjiang Song or Chao Yang.

Additional information

Zhenqiang Zuo and Ting Gong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Z., Gong, T., Che, Y. et al. Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil. Biodegradation 26, 223–233 (2015). https://doi.org/10.1007/s10532-015-9729-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-015-9729-2

Keywords

Navigation