Skip to main content
Log in

Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Camelimonas sp. and enzymatic properties of its hydrolase

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

An aerobic bacterial strain M11 capable of degrading dibutyl phthalate (DBP) was isolated and identified as Camelimonas sp. This strain could not grow on dialkyl phthalates, including dimethyl, diethyl, dipropyl, dibutyl and dipentyl phthalate, but suspensions of cells could transform these compounds to phthalate via corresponding monoalkyl phthalates. The degradation kinetics of DBP was best fitted by first-order kinetic equation. During growth in Brucella Selective Medium, M11 produced the high amounts of non-DBP-induced intracellular hydrolase in the stationary phase. The DBP hydrolase gene of M11 was cloned, and the recombinant DBP hydrolase had a high optimum degradation temperature (50 °C), and a wide range of pH and temperature stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akita K, Naitou C, Maruyama K (2001) Purification and characterization of an esterase from Micrococcus sp YGJ1 hydrolyzing phthalate esters. Biosci Biotechnol Biochem 65:1680–1683

    Article  CAS  PubMed  Google Scholar 

  • Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

  • Cartwright CD, Owen SA, Thompson IP, Burns RG (2000) Biodegradation of diethyl phthalate in soil by a novel pathway. FEMS Microbiol Lett 186:27–34

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li X, Li J, Cao J, Qiu Z, Zhao Q et al (2007) Degradation of environmental endocrine disruptor di-2-ethylhexyl phthalate by a newly discovered bacterium, Microbacterium sp. strain CQ0110Y. Appl Microbiol Biotechnol 74:676–682

    Article  CAS  PubMed  Google Scholar 

  • Cheung JKH, Lam RKW, Shi MY, Gu JD (2007) Environmental fate of the endocrine disruptors, dimethyl phthalate esters (DMPE), under anoxic sulfate-reducing conditions. Sci Total Environ 381:126–133

    Article  CAS  PubMed  Google Scholar 

  • Colborn T, Vom SF, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • David RM, Moore MR, Cifone MA, Finney DC, Guest D (1999) Chronic peroxisome proliferation and hepatomegaly associated with the hepatocellular tumorigenesis of di (2-ethylhexyl) phthalate and the effects of recovery. Toxicol Sci 50:195–205

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt G, Wallnofer PR (1978) Metabolism of di- and mono-nbutyl phthalate by soil bacteria. Appl Environ Microbiol 35:243–246

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fang C, Long Y, Shen D (2009) Comparison on the removal of phthalic acid diesters in a bioreactor landfill and a conventional landfill. Bioresour Technol 100:5664–5670

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Shimizu S, Okita N, Seto M, Masai E (1998) Structural alteration of linear plasmids encoding the genes for polychlorinated biphenyl degradation in Rhodococcus strain RHA1. Antonie Van Leeuwenhoek 74:169–173

    Article  CAS  PubMed  Google Scholar 

  • Hara H, Stewart GR, Mohn WW (2010) Involvement of a novel ABC transporter and monoalkyl phthalate ester hydrolase in phthalate ester catabolism by Rhodococcus jostii RHA1. Appl Environ Microbiol 76(5):1516–1523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hashizume K, Nanya J, Toda C, Yashi T, Nagano H, Kojima N (2002) Phthalate esters detected in various water samples and biodegradation of the phthalates by microbes isolated from river water. Biol Pharm Bull 25(2):209–214

    Article  CAS  PubMed  Google Scholar 

  • Huang PC, Tien C, Sun YM, Hsieh CY, Lee CC (2008) Occurrence of phthalates in sediment and biota: relationship to aquatic factors and the biota-sediment accumulation factor. Chemosphere 73(4):539–544

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Chen X, Wang X, Liao X, Xiao L, Miao A, Wu J, Yang L (2013) Identification and characterization of a cold-active phthalate esters hydrolase by screening a metagenomic library derived from biofilms of a wastewater treatment plant. PLoS One 8(10):e75977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jin D, Bai Z, Chang D, Hoefel Daniel, Jin B, Wang P, Wei D, Zhuang G (2012) Biodegradation of DBP by an isolated Gordonia sp. strain QH-11 genetic identification and degradation kinetics. J Hazard Mater 221:80–85

    Article  PubMed  Google Scholar 

  • Jobling S, Reynolds T, White R, Parker MG, Sumpter JP (1995) A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ Health Perspect 102:582–587

    Article  Google Scholar 

  • Lane DJ (1991) 16S/23 SrRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wilely, Chichester, pp 115–175

    Google Scholar 

  • Liang DW, Zhang T, Fang HH, He J (2008) Phthalates biodegradation in the environment. Appl Microbiol Biotechnol 80(2):183–198

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Tang F, Wang Y, Zhao J, Zeng X, Luo Q et al (2009) Biodegradation of dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate by Rhodococcus sp. L4 isolated from activated sludge. J Hazard Mater 168:938–943

    Article  CAS  PubMed  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neu HC, Heppel LA (1965) The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240(9):3685–3692

    CAS  PubMed  Google Scholar 

  • Nishioka T, Iwata M, Imaoka T, Mutoh M, Egashira Y et al (2006) A mono-2-ethylhexyl phthalate hydrolase from a Gordonia sp. that is able to dissimilate di-2- ethylhexyl phthalate. Appl Environ Microbiol 72:2394–2399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nyhoim N, lngerslev F, Berg UT, Pedersen JP, Frimer-Larsen H (1996) Estimation of kinetic rate constants for biodegradation of chemicals in activated sludge wastewater treatment plants using short term batch experiments and μgL range spiked concentrations. Chemosphere 33:851–864

    Article  Google Scholar 

  • PetroviIc M, Eljarrat E, LIopez MJ, BarcelIo D (2001) Analysis and environmental levels of endocrine-disrupting compounds in freshwater sediments. TRAC Trends Analyt Chem 20:637–648

    Article  Google Scholar 

  • Piersma AH, Verhoef A, te Biesebeek J, Pieters MN, Slob W (2000) Developmental toxicity of butyl benzyl phthalate in the rat using a multiple dose study design. Reprod Toxicol 14:417–425

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J (2001) Molecular cloning a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters a literature review. Chemosphere 35(4):667–749

    Article  CAS  Google Scholar 

  • Vamsee-Krishna C, Phale PS (2008) Bacterial degradation of phthalate isomers and their esters. Indian J Microbiol 48:19–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vikelsoe J, Thomsen M, Carlsen L (2002) Phthalates and nonylphenols in profiles of differently dressed soils. Sci Total Environ 296:105–116

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Xia X, Sha YJ (2008) Distribution of phthalic acid esters in Wuhan. J Hazard Mater 154:317–324

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zhao Y, Gao H, Yue W, Xiong M, Li F, Zhang H, Ge W (2013) Co-metabolic biodegradation of acetamiprid by Pseudoxanthomonas sp. Bioresour Technol 150:259–265

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Wang Y, Liang R, Dai Q, Jin D, Chao W (2011) Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Agrobacterium sp. and the biochemical pathway. Process Biochem 46:1090–1094

    Article  CAS  Google Scholar 

  • Wu J, Liao X, Yu F, Wei Z, Yang L (2012) Cloning of a dibutyl phthalate hydrolase gene from Acinetobacter. Appl Microbiol Biotechnol 97:2483–2491

    Article  PubMed  Google Scholar 

  • Xu X, Li H, Gu J (2005) Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate ester by Pseudomonas fluorescens B-1. Int Biodeterior Biodegrad 55:9–15

    Article  CAS  Google Scholar 

  • Yuan SY, Liu C, Liao CS, Chang BV (2002) Occurrence and microbial degradation of phthalate esters in Taiwan river sediments. Chemosphere 49:1295–1299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Major Science and Technology Program for Water Pollution Control and Treatment (Project No. 2012ZX07101006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Xiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, X., Yang, Y. et al. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Camelimonas sp. and enzymatic properties of its hydrolase. Biodegradation 26, 171–182 (2015). https://doi.org/10.1007/s10532-015-9725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-015-9725-6

Keywords

Navigation