Skip to main content
Log in

Characterization of the catabolic pathway for a phenylcoumaran-type lignin-derived biaryl in Sphingobium sp. strain SYK-6

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Sphingobium sp. strain SYK-6 is capable of degrading various lignin-derived biaryls. We determined the catabolic pathway of a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA) in SYK-6, and identified some of the DCA catabolism genes. In SYK-6 cells, the alcohol group of DCA was oxidized to the carboxyl group, first at the B-ring side chain and then at the A-ring side chain. The resultant metabolite was degraded to 5-formylferulate and vanillin through the decarboxylation and the Cα–Cβ cleavage of the A-ring side chain. Based on the DCA catabolic pathway, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) genes are thought to be involved in the conversion of DCA into an aldehyde intermediate (DCA-L) and the conversion of DCA-L into a carboxylic acid intermediate (DCA-C), respectively. SLG_05620 and SLG_24930, which belong to quinohemoprotein ADH and aryl ADH, respectively, were isolated as the genes responsible for the oxidation of DCA. In addition to these genes, multiple genes similar to SLG_05620 and SLG_24930 were found to confer DCA oxidation activities on Escherichia coli cells. In order to identify the DCA-L dehydrogenase genes, the DCA-L oxidation activities of the SYK-6 gene products of putative twenty-one ALDH genes were examined. Significant activities were observed in the four ALDH gene products, including the SLG_27910 product, which showed the highest activity. The disruption of SLG_27910 caused a decreased conversion of DCA-L, suggesting that SLG_27910 plays an important role in the DCA-L oxidation. In conclusion, no specific gene seems to be solely responsible for the conversion of DCA and DCA-L, however, the multiple genes encoding quinohemoprotein ADH and aryl ADH genes, and four ALDH genes are probably involved in the conversion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896

    Article  CAS  PubMed  Google Scholar 

  • Campbell MM, Sederoff RR (1996) Variation in lignin content and composition: mechanisms of control and implications for the genetic improvement of plants. Plant Physiol 110:3–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Capanema EA, Balakshin MY, Kadla JF (2005) Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. J Agric Food Chem 53:9639–9649

    Article  CAS  PubMed  Google Scholar 

  • De Jong GA, Geerlof A, Stoorvogel J, Jongejan JA, De Vries S, Duine JA (1995) Quinohaemoprotein ethanol dehydrogenase from Comamonas testosteroni: purification, characterization, and reconstitution of the apoenzyme with pyrroloquinoline quinone analogues. Eur J Biochem 230:899–905

    Article  PubMed  Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuhara Y, Inakazu K, Kodama N, Kamimura N, Kasai D, Katayama Y, Fukuda M, Masai E (2010) Characterization of the isophthalate degradation genes of Comamonas sp. strain E6. Appl Environ Microbiol 76:519–527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuhara Y, Kamimura N, Nakajima M, Hishiyama S, Hara H, Kasai D, Tsuji Y, Narita-Yamada S, Nakamura S, Katano Y, Fujita N, Katayama Y, Fukuda M, Kajita S, Masai E (2013) Discovery of pinoresinol reductase genes in sphingomonads. Enzyme Microb Technol 52:38–43

    Article  CAS  PubMed  Google Scholar 

  • Habu N, Samejima M, Yoshimoto T (1988) Metabolic pathway of dehydrodiconiferyl alcohol by Pseudomonas sp. TMY1009. Mokuzai Gakkaishi 34:1026–1034

    CAS  Google Scholar 

  • Kamimura N, Masai E (2014) The protocatechuate 4,5-cleavage pathway: overview and new findings. In: Nojiri H, Tsuda M, Fukuda M, Kamagata Y (eds) Biodegradative bacteria. Springer, Berlin, pp 207–226

    Chapter  Google Scholar 

  • Kamoda S, Saburi Y (1993) Structural and enzymatical comparison of lignostilbene-α, β-dioxygenase isozymes, I, II, and III, from Pseudomonas paucimobilis TMY1009. Biosci Biotechnol Biochem 57:931–934

  • Kamoda S, Terada T, Saburi Y (1997) Purification and some properties of lignostilbene-α, β-dioxygenase isozyme IV from Pseudomonas paucimobilis TMY1009. Biosci Biotechnol Biochem 61:1575–1576

    Article  CAS  PubMed  Google Scholar 

  • Kasai D, Kamimura N, Tani K, Umeda S, Abe T, Fukuda M, Masai E (2012) Characterization of FerC, a MarR-type transcriptional regulator, involved in transcriptional regulation of the ferulate catabolic operon in Sphingobium sp. strain SYK-6. FEMS Microbiol Lett 332:68–75

    Article  CAS  PubMed  Google Scholar 

  • Lüddeke F, Wülfing A, Timke M, Germer F, Weber J, Dikfidan A, Rahnfeld T, Linder D, Meyerdierks A, Harder J (2012) Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans. Appl Environ Microbiol 78:2128–2136

    Article  PubMed Central  PubMed  Google Scholar 

  • Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, Del Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    PubMed  Google Scholar 

  • Masai E, Ichimura A, Sato Y, Miyauchi K, Katayama Y, Fukuda M (2003) Roles of the enantioselective glutathione S-transferases in cleavage of β-aryl ether. J Bacteriol 185:1768–1775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71:1–15

    Article  CAS  PubMed  Google Scholar 

  • Meux E, Prosper P, Masai E, Mulliert G, Dumarçay S, Morel M, Didierjean C, Gelhaye E, Favier F (2012) Sphingobium sp. SYK-6 LigG involved in lignin degradation is structurally and biochemically related to the glutathione transferase omega class. FEBS Lett 586:3944–3950

    Article  CAS  PubMed  Google Scholar 

  • Morreel K, Ralph J, Kim H, Lu F, Goeminne G, Ralph S, Messens E, Boerjan W (2004) Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem. Plant Physiol 136:3537–3549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morreel K, Dima O, Kim H, Lu F, Niculaes C, Vanholme R, Dauwe R, Goeminne G, Inzé D, Messens E, Ralph J, Boerjan W (2010) Mass spectrometry-based sequencing of lignin oligomers. Plant Physiol 153:1464–1478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishimura M (2013) Molecular cloning and expression of the Streptomyces coniferyl alcohol dehydrogenase gene in Escherichia coli. Protein Expr Purif 89:109–115

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Masai E, Kasai D, Miyauchi K, Katayama Y, Fukuda M (2005) A second 5-carboxyvanillate decarboxylase gene, ligW2, is important for lignin-related biphenyl catabolism in Sphingomonas paucimobilis SYK-6. Appl Environ Microbiol 71:5014–5021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sato Y, Moriuchi H, Hishiyama S, Otsuka Y, Oshima K, Kasai D, Nakamura M, Ohara S, Katayama Y, Fukuda M, Masai E (2009) Identification of three alcohol dehydrogenase genes involved in the stereospecific catabolism of arylglycerol-β-aryl ether by Sphingobium sp. strain SYK-6. Appl Environ Microbiol 75:5195–5201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw JP, Harayama S (1990) Purification and characterisation of TOL plasmid-encoded benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase of Pseudomonas putida. Eur J Biochem 191:705–714

    Article  CAS  PubMed  Google Scholar 

  • Simmons BA, Loqué D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13:313–320

    Article  CAS  PubMed  Google Scholar 

  • Tanamura K, Abe T, Kamimura N, Kasai D, Hishiyama S, Otsuka Y, Nakamura M, Kajita S, Katayama Y, Fukuda M, Masai E (2011) Characterization of the third glutathione S-transferase gene involved in enantioselective cleavage of the β-aryl ether by Sphingobium sp. strain SYK-6. Biosci Biotechnol Biochem 75:2404–2407

    Article  CAS  PubMed  Google Scholar 

  • Toyama H, Fujii A, Matsushita K, Shinagawa E, Ameyama M, Adachi O (1995) Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols. J Bacteriol 177:2442–2450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto Y, Kasai D, Kamimura N, Masai E (2012) Isolation and characterization of bzaA and bzaB of Sphingobium sp. strain SYK-6, which encode aromatic aldehydes dehydrogenases with different substrate preferences. Transact GIGAKU 1:01009/01001-01006. http://voice.nagaokaut.ac.jp/transactions-on-gigaku/

Download references

Acknowledgments

This work was supported in part by the “Development of Preparatory Basic Bioenergy Technology” grant from The New Energy and Industrial Technology Development Organization (NEDO) of Japan and the “Advanced Low Carbon Technology Research and Development Program” grant from The Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Masai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, K., Kamimura, N., Hishiyama, S. et al. Characterization of the catabolic pathway for a phenylcoumaran-type lignin-derived biaryl in Sphingobium sp. strain SYK-6. Biodegradation 25, 735–745 (2014). https://doi.org/10.1007/s10532-014-9695-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-014-9695-0

Keywords

Navigation