Skip to main content
Log in

Reduced leaching of the herbicide MCPA after bioaugmentation with a formulated and stored Sphingobium sp.

  • Original Article
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The use of pesticides on sandy soils and on many non-agricultural areas entails a potentially high risk of water contamination. This study examined leaching of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) after bioaugmentation in sand with differently formulated and stored Sphingobium sp. T51 and at different soil moisture contents. Dry formulations of Sphingobium sp. T51 were achieved by either freeze drying or fluidised bed drying, with high initial cell viability of 67–85 %. Storage stability of T51 cells was related to formulation excipient/carrier and storage conditions. Bacterial viability in the fluidised bed-dried formulations stored at 25 °C under non-vacuum conditions was poor, with losses of at least 97 % within a month. The freeze-dried formulations could be stored substantially longer, with cell survival rates of 50 %, after 6 months of storage at the same temperature under partial vacuum. Formulated and long-term stored Sphingobium cells maintained their MCPA degradation efficacy and reduced MCPA leaching as efficiently as freshly cultivated cells, by at least 73 % when equal amounts of viable cells were used. The importance of soil moisture for practical field bioaugmentation techniques is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bending GD, Lincoln SD, Sørensen SR, Morgan JA, Aamand J, Walker A (2003) In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. and soil pH. Appl Environ Microbiol 69(2):827–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Börjesson E, Torstensson L, Stenström J (2004) The fate of imazapyr in a Swedish railway embankment. Pest Manag Sci 60(6):544–549

    Article  PubMed  Google Scholar 

  • Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31(1):248–252

    Article  CAS  Google Scholar 

  • Bouchez T, Patureau D, Dabert P, Juretschko S, Dore J, Delgenes P, Moletta R, Wagner M (2000) Ecological study of a bioaugmentation failure. Environ Microbiol 2(2):179–190

    Article  CAS  PubMed  Google Scholar 

  • Castro HP, Teixeira PM, Kirby R (1995) Storage of lyophilized cultures of Lactobacillus bulgaricus under different relative humidities and atmospheres. Appl Microbiol Biot 44(1–2):172–176

    Article  CAS  Google Scholar 

  • Cederlund H, Thierfelder T, Stenström J (2008) Functional microbial diversity of the railway track bed. Sci Total Environ 397(1–3):205–214

    Article  CAS  PubMed  Google Scholar 

  • Cederlund H, Börjesson E, Jonsson E, Thierfelder T (2012) Degradation and leaching of fluroxypyr after application to railway tracks. J Environ Qual 41(6):1884–1892

    Article  CAS  PubMed  Google Scholar 

  • Champagne CP, Mondou F, Raymond Y, Roy D (1996) Effect of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria. Food Res Int 29(5–6):555–562

    Article  CAS  Google Scholar 

  • Cheyns K, Calcoen J, Martin-Laurent F, Bru D, Smolders E, Springael D (2012) Effects of dissolved organic matter (DOM) at environmentally relevant carbon concentrations on atrazine degradation by Chelatobacter heintzii SalB. Appl Microbiol Biotechnol 95(5):1333–1341

    Article  CAS  PubMed  Google Scholar 

  • El Sebai T, Devers M, Lagacherie B, Rouard N, Soulas G, Martin-Laurent F (2010) Diuron mineralisation in a Mediterranean vineyard soil: impact of moisture content and temperature. Pest Manag Sci 66(9):988–995

    Article  PubMed  Google Scholar 

  • Grundmann S, Doerfler U, Munch JC, Ruth B, Schroll R (2011) Impact of soil water regime on degradation and plant uptake behaviour of the herbicide isoproturon in different soil types. Chemosphere 82(10):1461–1467

    Article  CAS  PubMed  Google Scholar 

  • Hess TF, Schmidt SK, Silverstein J, Howe B (1990) Supplemental substrate enhancement of 2,4-dinitrophenol mineralization by a bacterial consortium. Appl Environ Microb 56(6):1551–1558

    CAS  Google Scholar 

  • Horaczek A, Viernstein H (2004) Comparison of three commonly used drying technologies with respect to activity and longevity of aerial conidia of Beauveria brongniartii and Metarhizium anisopliae. Biol Control 31(1):65–71

    Article  Google Scholar 

  • Hubalek Z (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology 46(3):205–229

    Article  CAS  PubMed  Google Scholar 

  • Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microb 61(10):3592–3597

    CAS  Google Scholar 

  • Lestan D, Lamar RT (1999) Influence of humidity on production of pelleted fungal inoculum. World J Microb Biotechnol 15(3):349–357

    Article  Google Scholar 

  • Lovanh N, Hunt CS, Alvarez PJJ (2002) Effect of ethanol on BTEX biodegradation kinetics: aerobic continuous culture experiments. Water Res 36(15):3739–3746

    Article  CAS  PubMed  Google Scholar 

  • Melin P, Håkansson S, Schnurer J (2007) Optimisation and comparison of liquid and dry formulations of the biocontrol yeast Pichia anomala J121. Appl Microbiol Biotechnol 73(5):1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Moenne-Loccoz Y, Naughton M, Higgins P, Powell J, O’Connor B, O’Gara F (1999) Effect of inoculum preparation and formulation on survival and biocontrol efficacy of Pseudomonas fluorescens F113. J Appl Microbiol 86(1):108–116

    Article  Google Scholar 

  • Morgan CA, Herman N, White PA, Vesey G (2006) Preservation of micro-organisms by drying: a review. J Microbiol Methods 66(2):183–193

    Article  CAS  PubMed  Google Scholar 

  • Muller C, Petruschka L, Cuypers H, Burchhardt G, Herrmann H (1996) Carbon catabolite repression of phenol degradation in Pseudomonas putida is mediated by the inhibition of the activator protein PhlR. J Bacteriol 178(7):2030–2036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen MS, Baelum J, Jensen MB, Jacobsen CS (2011) Mineralization of the herbicide MCPA in urban soils is linked to presence and growth of class III tfdA genes. Soil Biol Biochem 43(5):984–990

    Article  CAS  Google Scholar 

  • Nopcharoenkul W, Pinphanichakarn P, Pinyakong O (2011) The development of a liquid formulation of Pseudoxanthomonas sp RN402 and its application in the treatment of pyrene-contaminated soil. J Appl Microbiol 111(1):36–47

    Article  CAS  PubMed  Google Scholar 

  • OECD guidelines for the testing of chemicals, OECD/OCDE nr 312, adopted 13 April 2004

  • Önneby K, Jonsson A, Stenström J (2010) A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide-degrading microorganisms. Biodegradation 21(1):21–29

    Article  PubMed  Google Scholar 

  • Önneby K, Pizzul L, Bjerketorp J, Mahlin D, Håkansson S, Wessman P (2013) Effects of di- and polysaccharide formulations and storage conditions on survival of freeze-dried Sphingobium sp. World J Microb Biotechnol 29(8):1399–1408

    Google Scholar 

  • Ragaei M (1999) Radiation protection of microbial pesticides. J Appl Entomol-Zeitschrift Fur Angewandte Entomol 123(6):381–384

    Article  Google Scholar 

  • Santivarangkna C, Kulozik U, Foerst P (2007) Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol Prog 23(2):302–315

    Article  CAS  PubMed  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MD, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol 22(8):855–872

    Article  Google Scholar 

  • Schoug A, Olsson J, Carlfors J, Schnurer J, Håkansson S (2006) Freeze-drying of Lactobacillus coryniformis Si3—effects of sucrose concentration, cell density, and freezing rate on cell survival and thermophysical properties. Cryobiology 53(1):119–127. doi:10.1016/j.cryobiol.2006.04.003

    Article  CAS  PubMed  Google Scholar 

  • Schoug A, Mahlin D, Jonson M, Håkansson S (2010) Differential effects of polymers PVP90 and Ficoll400 on storage stability and viability of Lactobacillus coryniformis Si3 freeze-dried in sucrose. J Appl Microbiol 108(3):1032–1040

    Article  CAS  PubMed  Google Scholar 

  • Schroll R, Becher HH, Dorfler U, Gayler S, Hartmann HP, Ruoss J (2006) Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environ Sci Technol 40(10):3305–3312

    Article  CAS  PubMed  Google Scholar 

  • Sørensen SR, Ronen Z, Aamand J (2002) Growth in coculture stimulates metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp strain SRS2. Appl Environ Microb 68(7):3478–3485

    Article  Google Scholar 

  • Sørensen SR, Schultz A, Jacobsen OS, Aamand J (2006) Sorption, desorption and mineralisation of the herbicides glyphosate and MCPA in samples from two Danish soil and subsurface profiles. Environ Pollut 141(1):184–194

    Article  PubMed  Google Scholar 

  • Taylor-Lovell S, Sims GK, Wax LM (2002) Effects of moisture, temperature, and biological activity on the degradation of isoxaflutole in soil. J Agr Food Chem 50(20):5626–5633

    Article  CAS  Google Scholar 

  • Tyagi M, da Fonseca MM, de Carvalho CC (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231–241

    Article  CAS  PubMed  Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61(2):121–135

    PubMed Central  PubMed  Google Scholar 

  • Wessman P, Mahlin D, Akhtar S, Rubino S, Leifer K, Kessler V, Håkansson S (2011) Impact of matrix properties on the survival of freeze-dried bacteria. J Sci Food Agr 91(14):2518–2528

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) and the Center for Biological Control (CBC) at SLU, Uppsala. We thank Research Engineer Elisabet Börjesson, Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden, for her assistance with column studies and pesticide analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Önneby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Önneby, K., Håkansson, S., Pizzul, L. et al. Reduced leaching of the herbicide MCPA after bioaugmentation with a formulated and stored Sphingobium sp.. Biodegradation 25, 291–300 (2014). https://doi.org/10.1007/s10532-013-9660-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-013-9660-3

Keywords

Navigation