Skip to main content
Log in

Plasmid-mediated bioaugmentation of sequencing batch reactors for enhancement of 2,4-dichlorophenoxyacetic acid removal in wastewater using plasmid pJP4

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Plasmid-mediated bioaugmentation was demonstrated using sequencing batch reactors (SBRs) for enhancing 2,4-dichlorophenoxyacetic acid (2,4-D) removal by introducing Cupriavidus necator JMP134 and Escherichia coli HB101 harboring 2,4-D-degrading plasmid pJP4. C. necator JMP134(pJP4) can mineralize and grow on 2,4-D, while E. coli HB101(pJP4) cannot assimilate 2,4-D because it lacks the chromosomal genes to degrade the intermediates. The SBR with C. necator JMP134(pJP4) showed 100 % removal against 200 mg/l of 2,4-D just after its introduction, after which 2,4-D removal dropped to 0 % on day 7 with the decline in viability of the introduced strain. The SBR with E. coli HB101(pJP4) showed low 2,4-D removal, i.e., below 10 %, until day 7. Transconjugant strains of Pseudomonas and Achromobacter isolated on day 7 could not grow on 2,4-D. Both SBRs started removing 2,4-D at 100 % after day 16 with the appearance of 2,4-D-degrading transconjugants belonging to Achromobacter, Burkholderia, Cupriavidus, and Pandoraea. After the influent 2,4-D concentration was increased to 500 mg/l on day 65, the SBR with E. coli HB101(pJP4) maintained stable 2,4-D removal of more than 95 %. Although the SBR with C. necator JMP134(pJP4) showed a temporal depression of 2,4-D removal of 65 % on day 76, almost 100 % removal was achieved thereafter. During this period, transconjugants isolated from both SBRs were mainly Achromobacter with high 2,4-D-degrading capability. In conclusion, plasmid-mediated bioaugmentation can enhance the degradation capability of activated sludge regardless of the survival of introduced strains and their 2,4-D degradation capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aspray TJ, Hansen SK, Burns RG (2005) A soil-based microbial biofilm exposed to 2,4-D: bacterial community development and establishment of conjugative plasmid pJP4. FEMS Microbiol Ecol 54:317–327

    Article  PubMed  CAS  Google Scholar 

  • Bathe S, Mohan TVK, Wuertz S, Hausner M (2004) Bioaugmentation of a sequencing batch biofilm reactor by horizontal gene transfer. Water Sci Technol 49:337–344

    PubMed  CAS  Google Scholar 

  • Bathe S, Schwarzenbeck N, Hausner M (2005) Plasmid-mediated bioaugmentation of activated sludge bacteria in a sequencing batch moving bed reactor using pNB2. Lett Appl Microbiol 41:242–247

    Article  PubMed  CAS  Google Scholar 

  • Chong N, Lin T (2007) Measurement of the degradation capacity of activated sludge for a xenobiotic organic. Bioresour Technol 98:1124–1127

    Article  PubMed  CAS  Google Scholar 

  • Cowan ST (1974) Cowan and Steel’s manual for the identification of medical bacteria, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • De Gelder L, Vandecasteele FPJ, Brown CJ, Forney LJ, Top EM (2005) Plasmid donor affects host range of promiscuous IncP-1β plasmid pB10 in an activated-sludge microbial community. Appl Environ Microbiol 71:5309–5317

    Article  PubMed  Google Scholar 

  • De Gelder L, Ponciano JM, Joyce P, Top EM (2007) Stability of a promiscuous plasmid in different hosts: no guarantee for a long-term relationship. Microbiology 153:452–463

    Article  PubMed  Google Scholar 

  • Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686

    PubMed  CAS  Google Scholar 

  • Fujita M, Ike M, Hioki J, Kataoka K, Takeo M (1995) Trichloroethylene degradation by genetically engineered bacteria carrying cloned phenol catabolic genes. J Ferment Bioeng 79:100–106

    Article  CAS  Google Scholar 

  • Goris J, Dejonghe W, Falsen E, De Clerck E, Geeraerts B, Willems A, Top EM, Vandamme P, De Vos P (2002) Diversity of transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- and B-horizon of an agricultural soil and description of Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov. Syst Appl Microbiol 25:340–352

    Article  PubMed  CAS  Google Scholar 

  • Inoue D, Hara S, Kashihara M, Murai Y, Danzl E, Sei K, Tsunoi S, Fujita M, Ike M (2008) Degradation of bis(4-hydroxyphenyl)methane (bisphenol F) by Sphingobium yanoikuyae strain FM-2 isolated from river water. Appl Environ Microbiol 74:352–358

    Article  PubMed  CAS  Google Scholar 

  • Inoue D, Yamazaki Y, Tsutsui T, Sei K, Soda S, Fujita M, Ike M (2012) Impacts of gene bioaugmentation with pJP4-harboring bacteria of 2,4-D-contaminated soil slurry on the indigenous microbial community. Biodegradation 23:263–276

    Article  PubMed  CAS  Google Scholar 

  • Limbergen HV, Top EM, Verstrate W (1998) Bioaugmentation in activated sludge: current features and future perspectives. Appl Microbiol Biotechnol 50:16–23

    Article  Google Scholar 

  • Marrón-Montiel E, Ruiz-Ordaz N, Rubio-Granados C, Juárez-Ramírez C, Galíndez-Mayer CJ (2006) 2,4-D-degrading bacterial consortium: Isolation, kinetic characterization in batch and continuous culture and application for bioaugmenting an activated sludge microbial community. Process Biochem 41:1521–1528

    Article  Google Scholar 

  • Mohan SV, Falkentoft C, Nancharaiah YV, Sturm BSM, Wattiau P, Wilderer PA, Wuertz S, Hausner M (2009) Bioaugmentation of microbial communities in laboratory and pilot scale sequencing batch biofilm reactors using the TOL plasmid. Bioresour Technol 100:1746–1753

    Article  Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    Article  PubMed  CAS  Google Scholar 

  • Neilson JW, Josephson KL, Pillai SD, Pepper IL (1992) Polymerase chain reaction and gene probe detection of the 2,4-dichlorophenoxyacetic acid degradation plasmid, pJP4. Appl Environ Microbiol 58:1271–1275

    PubMed  CAS  Google Scholar 

  • Newby DT, Gentry TJ, Pepper IL (2000) Comparison of 2,4-dichlorophenoxyacetic acid degradation and plasmid transfer in soil resulting from bioaugmentation with two different pJP4 donors. Appl Environ Microbiol 66:3399–3407

    Article  PubMed  CAS  Google Scholar 

  • Pepper IL, Gentry TJ, Newby D, Roane TM, Josephson KL (2002) The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Environ Health Perspect 110(Suppl 6):943–946

    Article  PubMed  CAS  Google Scholar 

  • Quan X, Tang H, Xiong W, Yang Z (2010) Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophenoxyacetic acid. J Hazard Mater 179:1136–1142

    Article  PubMed  CAS  Google Scholar 

  • Quan X, Ma J, Xiong W, Yang Z (2011) Effects of gene-augmentation on the formation, characteristics and microbial community of 2,4-dichlorophenoxyacetic acid degrading aerobic microbial granules. J Hazard Mater 196:278–286

    Article  PubMed  CAS  Google Scholar 

  • Soda S, Uesugi K, Ike M, Fujita M (1999) Application of a floc-forming genetically engineered microorganism to a sequencing batch reactor for phenolic wastewater treatment. J Biosci Bioeng 88:85–91

    Article  PubMed  CAS  Google Scholar 

  • Tchelet R, Meckenstock R, Steinle P, van der Meer JR (1999) Population dynamics of an introduced bacterium degrading chlorinated benzenes in a soil column and in sewage sludge. Biodegradation 10:113–125

    Article  PubMed  CAS  Google Scholar 

  • Top EM, Springael D, Boon N (2002) Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol Ecol 42:199–208

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui H, Soda S, Takeda S, Ohtsuki H, Inoue D, Sei K, Ike M (2009) Transfer of plasmid pJP4 from Escherichia coli to activated sludge bacteria by filter mating. Japn J Water Treat Biol 45:185–191

    Google Scholar 

  • Tsutsui H, Anami Y, Matsuda M, Inoue D, Sei K, Soda S, Ike M (2010) Transfer of plasmid pJP4 from Escherichia coli and Pseudomonas putida to bacteria in activated sludge developed under different sludge retention times. J Biosci Bioeng 110:684–689

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants-in-Aid for Young Scientists (A) (No. 21681009) from Japan Society for the Promotion of Science (JSPS) and Grant-in-Aid for JSPS Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Soda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsutsui, H., Anami, Y., Matsuda, M. et al. Plasmid-mediated bioaugmentation of sequencing batch reactors for enhancement of 2,4-dichlorophenoxyacetic acid removal in wastewater using plasmid pJP4. Biodegradation 24, 343–352 (2013). https://doi.org/10.1007/s10532-012-9591-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-012-9591-4

Keywords

Navigation