Skip to main content
Log in

Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A new arsenite-oxidizing bacterium was isolated from a low arsenic-containing (8.8 mg kg−1) soil. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the strain was closely related to Stenotrophomonas panacihumi. Batch experiment results showed that the strain completely oxidized 500 μM of arsenite to arsenate within 12 h of incubation in a minimal salts medium. The optimum initial pH range for arsenite oxidation was 5–7. The strain was found to tolerate as high as 60 mM arsenite in culture media. The arsenite oxidase gene was amplified by PCR with degenerate primers. The deduced amino acid sequence showed the highest identity (69.1 %) with the molybdenum containing large subunit of arsenite oxidase derived from Bosea sp. Furthermore the amino acids involved in binding the substrate arsenite, were conserved with the arsenite oxidases of other arsenite oxidizing bacteria such as Alcaligenes feacalis and Herminnimonas arsenicoxydans. To our knowledge, this study constitutes the first report on arsenite oxidation using Stenotrophomonas sp. and the strain has great potential for application in arsenic remediation of contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Battaglia-Brunet F, Dictor M-C, Garrido F, Crouzet C, Morin D, Dekeyser K, Clarens M, Baranger P (2002) An arsenic(III)-oxidizing bacterial population: selection, characterization, and performance in reactors. J Appl Microbiol 93:656–667

    Article  PubMed  CAS  Google Scholar 

  • Bhumbla DK, Keefer RF (1994) Arsenic mobilization and bioavailability in soils. In: Nriagu JO (ed) Arsenic in the environment. Part 1 Cycling and characterization. Wiley, New York, pp 51–82

    Google Scholar 

  • Botes E, Heerden EV, Litthauer D (2007) Hyper-resistance to arsenic in bacteria isolated from an antimony mine in South Africa. S Afr J Sci 103:279–282

    CAS  Google Scholar 

  • Cai L, Liu G, Rensing C, Wang G (2009) Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol 9:4. doi:10.1186/1471-2180-9-4

    Article  PubMed  CAS  Google Scholar 

  • Clifford D (1990) Ion exchange and inorganic adsorption. In: Pontius F (ed) Water quality and treatment, AWWA handbook. McGraw-Hill, New York, p 9

    Google Scholar 

  • Dastidar A, Wang Y-T (2009) Arsenite oxidation by batch cultures of Thiomonas arsenivorans strainb6. J Environ Eng 135:708–715

    Article  CAS  Google Scholar 

  • Drewniak L, Styczek A, Sklodowska A (2007) Arsenic hypertolerant bacteria isolated from gold mine rocks biofilms. Adv Mater Res 20–21:576

    Article  Google Scholar 

  • Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 and 2.03 Å. Structure 9:125–132

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Dominguez E, Mumford A, Rhine ED, Paschal A, Young LY (2009) Novel autotrophic arsenite-oxidizing bacteria isolated from soil and sediments. FEMS Microbiol Ecol 66:401–410

    Article  CAS  Google Scholar 

  • Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335–340

    Article  PubMed  CAS  Google Scholar 

  • Green HH (1918) Description of a bacterium that oxidizes arsenite and one which reduces arsenate to arsenite from a cattle-dipping tank. S Afr J Sci 14:465–467

    CAS  Google Scholar 

  • Ilyaletdinov AN, Abdrashitova SA (1981) Autotrophic oxidation of arsenic by a culture of Pseudomonas arsenitoxidans. Mikrobiologiya 50:197–204

    CAS  Google Scholar 

  • Kinegam S, Yingprasertchai T, Tanasupawat S et al (2008) Isolation and characterization of arsenite-oxidizing bacteria from arsenic-contaminated soils in Thailand. World J Microbiol Biotechnol 24:3091–3096

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Liao VH-C, Chu Y-J, Su Y-C et al (2011) Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol 123:20–29

    Article  PubMed  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  PubMed  CAS  Google Scholar 

  • Muller D, Lievremont D, Simeonova DD, Hubert J-C, Lett M-C (2003) Arsenite oxidase (aox) genes from a metal-resistant β-proteobacterium. J Bacteriol 185:135–141

    Article  PubMed  CAS  Google Scholar 

  • Ng JC, Moore MR (2005) Arsenic in drinking water: a natural killer in Bangladesh and beyond. Med J Aust 183:562–563

    PubMed  Google Scholar 

  • Nriagu JO (2002) Arsenic poisoning through the ages. In: Frankenberger WT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 1–26

    Google Scholar 

  • Osborne FH, Ehrlich HL (1976) Oxidation of arsenite by a soil isolate of Alcaligenes. J Appl Bacteriol 41:295–305

    Article  PubMed  CAS  Google Scholar 

  • Rhine ED, Phelps CD, Young LY (2006) Anaerobic arsenic oxidation by novel denitrifying isolates. Environ Microbiol 8:899–908

    Article  PubMed  CAS  Google Scholar 

  • Rhine ED, Ní Chadhain SM, Zylstra GJ, Young LY (2007) The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers. Biochem Biophys Res Commun 354:662–667

    Article  CAS  Google Scholar 

  • Salmassi TM, Venkateswaren K, Satomi M, Newman DK, Hering JG (2002) Oxidation of arsenite by Agrobacterium albertimagni AOL15, sp. nov., isolated from hot creek, California. Geomicrobiol J 19:53–66

    Article  CAS  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97

    Article  PubMed  CAS  Google Scholar 

  • Sehlin HM, Lindström EB (1992) Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC. FEMS Microbiol Lett 93:87–92

    Article  CAS  Google Scholar 

  • Simeonova DD, Micheva K, Muller D et al (2005) Arsenite oxidation in batch reactors with alginate-immobilized ULPAs1 strain. Biotechnol Bioeng 91:441–446

    Article  PubMed  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Suttigarn A, Wang Y-T (2005) Arsenite oxidation by Alcaligenes faecalis strain O1201. J Environ Eng 131:1293–1301

    Article  CAS  Google Scholar 

  • Turner AW (1949) Bacterial oxidation of arsenite. Nature (London) 164:76–77

    CAS  Google Scholar 

  • US EPA (2000) Technologies and costs for removal of arsenic from drinking water, EPA report 815-R-00-028. US EPA, Washington DC

    Google Scholar 

  • Weeger W, Lievremont D, Perret M et al (1999) Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12:141–149

    Article  PubMed  CAS  Google Scholar 

  • WHO (1993) Guidelines for drinking water quality, vol 1: recommendations, 2nd edn. WHO, Geneva. http://www.who.int/water_sanitation_health/dwq/gdwq2v1/en/. Accessed 6 June 2012

  • Yoon I-H, Chang J-S, Lee J-H, Kim K-W (2009) Arsenite oxidation by Alcaligenes sp. strain RS-19 isolated from arsenic-contaminated mines in the Republic of Korea. Environ Geochem Health 31:109–117

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was conducted while the first author was receiving the International Postgraduate Research Scholarship (IPRS) supported by the Australian Government in collaboration with the Centre for Environmental Risk Assessment and Remediation, University of South Australia. The authors would like to thank Dr. Mohammad Rahman for technical assistance with the ICP analysis and Dr. Kannan Krishnan for his assistance with the molecular study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Mezbaul Bahar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahar, M.M., Megharaj, M. & Naidu, R. Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation 23, 803–812 (2012). https://doi.org/10.1007/s10532-012-9567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-012-9567-4

Keywords

Navigation