Skip to main content
Log in

Simultaneous biodegradation of phenol and carbon tetrachloride mediated by humic acids

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The capacity of an anaerobic sediment to achieve the simultaneous biodegradation of phenol and carbon tetrachloride (CT) was evaluated, using humic acids (HA) as redox mediator. The presence of HA in sediment incubations increased the rate of biodegradation of phenol and the rate of dehalogenation (2.5-fold) of CT compared to controls lacking HA. Further experiments revealed that the electron-accepting capacity of HA derived from different organic-rich environments was not associated with their reducing capacity to achieve CT dechlorination. The collected kinetic data suggest that the reduction of CT by reduced HA was the rate-limiting step during the simultaneous biodegradation of phenol and CT. To our knowledge, the present study constitutes the first demonstration of the simultaneous biodegradation of two priority pollutants mediated by HA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HA:

Humic acids

ETC:

Electron-transferring capacity

TEA:

Terminal electron acceptor

RM:

Redox mediators

AQDS:

Anthraquinone-2,6-disulfonate

CT:

Carbon tetrachloride

CS:

Anaerobic sludge from a factory of candies

PS:

Anaerobic sludge from a paper-mill factory

S:

Sediment

VS:

Volatile solids

VFA:

Volatile fatty acids

AH2QDS:

Anthrahydroquinone-2,6-disulfonate

R 2 :

Coefficient of determination

SCP:

Soil of cocoa plantation

SDF:

Soil of deciduous forest in San Luis Potosí, Mexico

GWC:

Compost produced with gardening wastes

IHSS:

International Humic Substance Society

EAC:

Electron accepting capacity

μEq:

Micro-electron equivalents

CF:

Chloroform

DCM:

Dichloromethane

k d2 :

Second-order rate constant

k d1 :

First-order rate constant

References

  • Aranda-Tamaura C, Estrada-Alvarado MI, Texier AC, Cuervo F, Gómez J, Cervantes FJ (2007) Effects of different quinoid redox mediators on the removal of sulphide and nitrate via denitrification. Chemosphere 69:1722–1727

    Article  PubMed  CAS  Google Scholar 

  • Benz M, Schink B, Brune A (1998) Humic acid reduction by Propionibacterium freudenreichii and other fermentative bacteria. Appl Environ Microbiol 64:4507–4512

    PubMed  CAS  Google Scholar 

  • Bradley PM, Chapelle FH, Lovley DR (1998) Humic acids as electron acceptors for anaerobic microbiol oxidation of vinyl chloride and dichloethene. Appl Environ Microbiol 64:3102–3105

    PubMed  CAS  Google Scholar 

  • Bruce RA, Achenbach LA, Coates JD (1999) Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environ Microbiol 1:319–329

    Article  PubMed  CAS  Google Scholar 

  • Cervantes FJ, van der Velde S, Lettinga G, Field JA (2000) Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenol compounds. Biodegradation 11:313–321

    Article  PubMed  CAS  Google Scholar 

  • Cervantes FJ, Dijksma W, Duong-Dac T, Ivanova A, Lettinga G, Field JA (2001a) Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors. Appl Environ Microbiol 67:4471–4478

    Article  PubMed  CAS  Google Scholar 

  • Cervantes FJ, van der Zee FP, Lettinga G, Field JA (2001b) Enhanced decolourisation of acid orange 7 in a continuous UASB reactor with quinones as redox mediators. Water Sci Technol 44:123–128

    PubMed  CAS  Google Scholar 

  • Cervantes FJ, Vu-Thi-Thu L, Lettinga G, Field JA (2004) Quinone-respiration improves dechlorination of carbon tetrachloride by anaerobic sludge. Appl Microbiol Biotechnol 64:702–711

    Article  PubMed  CAS  Google Scholar 

  • Cervantes FJ, Gutiérrez CH, López KY, Estrada-Alvarado MI, Meza-Escalante ER, Texier AC, Cuervo F, Gómez J (2008) Contribution of quinone-reducing microorganisms to the anaerobic biodegradation of organic compounds under different redox conditions. Biodegradation 19:235–246

    Article  PubMed  CAS  Google Scholar 

  • Coates JD, Cole KA, Chakraborty R, O’Connor SM, Achenbach LA (2002) Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. Appl Microbiol Biotechnol 68:2445–2452

    CAS  Google Scholar 

  • Curtis GP, Reinhard M (1994) Reductive dehalogenation of hexachloroethane, carbon tetrachloride and bromoform by anthrahydroquinone disulfonate and húmica acid. Environ Sci Technol 28:2393–2401

    Article  PubMed  CAS  Google Scholar 

  • Doong R-A, Chiang H-C (2005) Transformation of carbon tetrachloride by thiol reductants in the presence of quinone compound. Environ Sci Technol 39:7460–7468

    Article  PubMed  CAS  Google Scholar 

  • Field JA, Cervantes FJ, van der Zee FP, Lettinga G (2000) Role of quinones in the biodegradation of priority pollutans: a review. Water Sci Technol 42:215–222

    CAS  Google Scholar 

  • Guerrero-Barajas C, Field JA (2005) Riboflavin and cobalamin mediated biodegradation of chloroform in a methanogenic consortium. Biotechnol Bioeng 89:539–550

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Kappler A (2008) Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. Environ Sci Technol 42:3563–3569

    Article  PubMed  CAS  Google Scholar 

  • Kappler A, Haderlein SB (2003) Natural organic matter as reductant for chlorinated aliphatic pollutants. Environ Sci Technol 37:2714–2719

    Article  PubMed  CAS  Google Scholar 

  • León-García GJ, Razo-Flores E, Cervantes FJ (2007) Propiedades catalíticas del humus y su potencial aplicación en la degradación de contaminantes prioritarios. Revista Latinoamericana de Recursos Naturales 3(2):118–128

    Google Scholar 

  • Li XM, Zhou SG, Li FB, Wu CY, Zhuang L, Xu W, Liu L (2009) Fe(III) oxide reduction and carbon tetrachloride by a newly isolated Klebsiella pneumoniae strain L17. J Appl Microbiol 106:130–139

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Zhou J, Wang J, Zhou M, Lu H, Jin R (2009) Acceleration of azo dye decolorization by using quinone reductase activity of azoreductase and quinone redox mediator. Biores Technol 100:2791–2795

    Article  CAS  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  CAS  Google Scholar 

  • Lovley DR, Fraga JL, Coates JD, Blunt-Harris EL (1999) Humics as an electron donor for anaerobic respiration. Environ Microbiol 1:89–98

    Article  PubMed  CAS  Google Scholar 

  • Minderlein S, Blodau C (2010) Humic-rich peat extracts inhibit sulfate reduction, methanogenesis, and anaerobic respiration but not acetogenesis in peat soils of a temperate bog. Soil Biol Biochem 42(12):2078–2086

    Article  CAS  Google Scholar 

  • Perminova IV, Kovalenko AN, Schmitt-Kopplin P, Hatfield K, Hertkorn N, Belyaeva EY, Petrosyan VS (2005) Desing of quinonoid-enriched humic materials with enhanced redox properties. Environ Sci Technol 39:8518–8524

    Article  PubMed  CAS  Google Scholar 

  • Ratasuk N, Nanny MA (2007) Characterization and quantification of reversible redox sites in humic substances. Environ Sci Technol 41:7844–7850

    Article  PubMed  CAS  Google Scholar 

  • Rau J, Knackmuss H-J, Stolz A (2002) Effects of different quinoid redox mediator on the anaerobic reduction of azo dyes by bacteria. Environ Sci Technol 36:1497–1504

    Article  PubMed  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition reactions. Wiley, New York

    Google Scholar 

  • Van der Zee FP, Cervantes FJ (2009) Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv 27:256–277

    Article  PubMed  Google Scholar 

  • Watanabe K, Manefield M, Lee M, Kouzuma A (2009) Electron shuttles in biotechnology. Curr Opin Biotechnol 20:1–9

    Article  Google Scholar 

Download references

Acknowledgments

The present study was financially supported by the Council of Science and Technology of Mexico (SEP-CONACYT Grants 55045 and 155656) and by the Lettinga Associates Foundation (Lettinga Award 2007). C. M. Martínez-Rodríguez is grateful for the scholarship for PhD studies from CONACyT (Grant 206474). We acknowledge the use of facilities of the National Laboratory of Agricultural, Medical and Environmental Biotechnology (LANBAMA). We thank the technical assistance of M.C. Rocha-Medina, G. Vidriales-Escobar and D. Partida-Gutiérrez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia M. Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, C.M., Alvarez, L.H. & Cervantes, F.J. Simultaneous biodegradation of phenol and carbon tetrachloride mediated by humic acids. Biodegradation 23, 635–644 (2012). https://doi.org/10.1007/s10532-012-9539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-012-9539-8

Keywords

Navigation