Skip to main content
Log in

Removal of methyl parathion and tetrachlorvinphos by a bacterial consortium immobilized on tezontle-packed up-flow reactor

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A tezontle-packed up-flow reactor (TPUFR) with an immobilized bacterial consortium for biological treatment of methyl-parathion and tetrachlorvinphos was evaluated. These organophosphate pesticides are widely used in Mexico for insect and mite control, respectively. With the aim of developing a tool for pesticide biodegradation, four flow rates (0.936, 1.41, 2.19, and 3.51 l/h) and four hydraulic residence times (0.313, 0.206, 0.133, and 0.083 h) were evaluated in a TPUFR. In the bioreactor, with an operating time of 8 h and a flow of 0.936 l/h, we obtained 75% efficiency in the removal of methyl-parathion and tetrachlorvinphos. Their adsorptions in the volcanic rock were 9% and 6%, respectively. It was demonstrated that the removal of pesticides was due to the biological activity of the immobilized bacterial consortium. We confirmed the decrease in toxicity in the treated effluent from the bioreactor through the application of acute toxicity tests on Eisenia foetida. Immobilization of a bacterial consortium using tezontle as a support is innovative and an economical tool for the treatment of mixtures of organophosphorus pesticide residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdisc Toxicol 2(1):1–12. doi:10.2478/v10102-009-0001-7

    Article  Google Scholar 

  • Bianchi E, Censabella I, Fascetti E (2008) Aerobic biodegradation of MtBE in an upflow fixed bed reactor. J Chem Technol Biotechnol 84(6):871–876. doi:10.1002/jctb.2133

    Article  Google Scholar 

  • Buchbinder J, Stephenson R, Dresser M, Pitera J, Scanlan T, Fletterick R (1998) Biochemical characterization and chrystallographic structure of an Escherichia coli protein from the phosphotriesterase gene family. Biochemistry 37(15):5096–5106. doi:10.1021/bi971707+

    Article  PubMed  CAS  Google Scholar 

  • Burton S (2001) Development of bioreactors for application of biocatalysts in biotransformation and bioremediation. Pure Appl Chem 73(1):77–83

    Article  CAS  Google Scholar 

  • Chen W, Georgiou G (2002) Cell-surface display of heterologous proteins: from high throughput screening to environmental applications. Biotechnol Bioeng 5:496–503. doi:10.1002/bit.10407

    Article  Google Scholar 

  • Dasgupta S, Meisner C, Wheeler D (2010) Stockpiles of obsolete pesticides and cleanup priorities: a methodology and application for Tunisia. J Environ Manage 91(4):824–830. doi:10.1016/j.jenvman.2009.10.012

    Article  PubMed  CAS  Google Scholar 

  • de la Peña MM, Tehara SK, Hong T, Keasling JD (2006) Mineralization of paraoxon and its use as a sole C and P source by a rationally designed catabolic pathway in Pseudomonas putida. Appl Environ Microbiol 72(10):6699–6706. doi:10.1128/AEM.00907-06

    Article  Google Scholar 

  • Galíndez-Nájera SP, Llamas-Martínez MA, Ruiz-Ordaz N, Juárez-Ramírez C, Mondragón-Parada ME, Ahuatzi-Chacón D, Galíndez-Mayer J (2009) Cyanuric acid biodegradation by a mixed bacterial culture of Agrobacterium tumefaciens and Acinetobacter sp. in a packed bed biofilm reactor. J Ind Microbiol Biotechnol 36:275–284. doi:10.1007/s10295-008-0496-5

    Article  PubMed  Google Scholar 

  • Godon JJ, Zumstein E, Dabert P, Habouzit F, Moletta R (1997) Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63(7):2802–2813

    Google Scholar 

  • Ha J, Engler CR, Lee SJ (2008) Determination of diffusion coefficients and diffusion characteristics for chlorferon and diethylthiophosphate in Ca-alginate gel beads. Biotechnol Bioeng 100(4):698–706. doi:10.1002/bit.21761

    Article  PubMed  CAS  Google Scholar 

  • Ha J, Engler CR, Wild JR (2009) Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresour Technol 100(3):1138–1142. doi:10.1016/j.biortech.2008.08.022

    Article  PubMed  CAS  Google Scholar 

  • Hallas L, Adams W, Heitkamp M (1992) Glyphosate degradadtion by bacteria immobilized: field studies with industrial wastewater effluent. Appl Environ Microbiol 58(4):1215–1219

    PubMed  CAS  Google Scholar 

  • Jajuee B, Margaritis A, Karamanev D, Bergougnou M (2007) Kinetics of biodegradation of p-xylene and naphthalene and oxygen transfer in a novel airlift immobilized bioreactor. Biotechnol Bioeng 96(2):232–243. doi:10.1002/bit.21106

    Article  PubMed  CAS  Google Scholar 

  • Jin-Woo K, Rainina I, Mulbry W, Engler R, Wild R (2002) Enhanced-rate biodegradation of organophosphate neurotoxins by immobilized nongrowing bacteria. Biotechnol Prog 18(3):429–436. doi:10.1021/bp0200346

    Article  Google Scholar 

  • Karstensen KH, Nguyen KK, Le BT, Pham HV, Nguyen DT, Doan TT, Nguyen HH, Tao MQ, Luong DH, Doan HT (2006) Environmentally sound destruction of obsolete pesticides in developing countries using cement kilns. Environ Sci Policy 9(6):577–586. doi:10.1016/j.envsci.2006.05.005

    Article  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71:95–122. doi:10.1016/j.jenvman.2004.02.003

    Article  PubMed  Google Scholar 

  • Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollut 141:555-570. doi:10.1016/j.envpol.2005.07.024

    Google Scholar 

  • Li F, Xu P, Feng J, Meng L, Zheng Y, Luo L, Ma1 C (2005) Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system. Appl Environ Microbiol 71(1):276–281. doi:10.1128/AEM.71.1.276-281.2005

    Google Scholar 

  • Mansee AH, Chen W, Mulchandani A (2000) Biodetoxification of coumaphos insecticide using immobilized Escherichia coli expressing organophosphorus hydrolase enzyme on cell surface. Biotechnol Bioprocess Eng 5:436–440

    Google Scholar 

  • Martin M, Mengs G, Plaza E, Garbi C, Sánchez A, Gibello A, Gutierrez F, Ferrer E (2000) Propachlor removal by Pseudomonas strain GCH1 in a immobilized-cell system. Appl Environ Microbiol 66(3):1190–1194

    Article  PubMed  CAS  Google Scholar 

  • Moens T, Araya M, Swennen R, Waele DD (2004) Enhanced biodegradation of nematicides after repetitive applications and its effect on root and yield parameters in commercial banana plantations. Biol Fertil Soils 39:407–414. doi:10.1007/s00374-004-0726-6

    Article  CAS  Google Scholar 

  • Mondragón-Parada ME, Ruiz-Ordaz N, Tafoya-Garnica A, Juárez-Ramírez C, Curiel-Quesada E, Galíndez-Mayer J (2008) Chemostat selection of a bacterial community able to degrade s-triazinic compounds: continuous simazine biodegradation in a multi-stage packed bed biofilm reactor. J Ind Microbiol Biotechnol 35:767–776. doi:10.1007/s10295-008-0347-4

    Article  PubMed  Google Scholar 

  • Morgan-Sagastume JM, Noyola A (2008) Evaluation of an aerobic submerged filter packed with volcanic scoria. Bioresour Technol 99:2528–2536. doi:10.1016/j.biortech.2007.04.068

    Article  PubMed  CAS  Google Scholar 

  • Mulchandani A, Kaneva I, Chen W (1999) Detoxification of organophosphate nerve agents by immobilized Escherichia coli with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 63(2):216–223. doi:10.1002/(SICI)1097-0290(19990420)63:2<216:AID-BIT10>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  • O′Reilly K, Crawford R (1989) Kinetics of p-Cresol degradation by an immobilized Pseudomonas sp. Appl Environ Microbiol 55:866–870

    PubMed  Google Scholar 

  • Olvera-Velona A, Capowiez I, Mascle O, Ortiz-Hernández L, Benoit P (2008) Assessment of the toxicity of ethyl-parathion to earthworms (Aporrectodea caliginosa) using behavioural, physiological and biochemical markers. Appl Soil Ecol 40(3):476–483. doi:10.1016/j.apsoil.2008.07.002

    Article  Google Scholar 

  • Ortiz-Hernández ML, Quintero-Ramírez R, Nava-Ocampo A, Bello-Ramírez AM (2003) Study of the mechanism of Flavobacterium sp. for hydrolyzing organophosphate pesticides. Fundametal Clin Pharmacol 17:717–723. doi:10.1046/j.1472-8206.2003.00202.x

    Article  Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E, Olvera-Velona A, Folch-Mallol JL (2011) Pesticides in the environment: impacts and their biodegradation as a strategy for residues treatment. In Stoytcheva M (ed) Pesticides-formulations, effects, fate. ISBN: 978-953-307-532-7. InTech. Rijeka, pp 551–574

  • Pimentel D (2005) Environmental and economic costs of the application of pesticides primarily in the United States? Environ Dev Sustain 7:229–252. doi:10.1007/s10668-005-7314-2

    Article  Google Scholar 

  • Rama Krishna K, Ligy P (2009) Biodegradation of mixed pesticides by mixed pesticide enriched cultures. J Environ Sci Health 44:18–30. doi:10.1080/03601230802519520

    Article  Google Scholar 

  • Richins R, Mulchandani A, Chen W (2000) Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes. Biotechnol Bioeng 69:591–596. doi:10.1002/1097-0290(20000920)69:6<591:AID-BIT2>3.0.CO;2-X

    Article  PubMed  CAS  Google Scholar 

  • Santacruz G, Bandala E, Torres LG (2005) Chlorinated pesticides (2, 4–D and DDT) biodegradation at high concentrations using immobilized Pseudomonas fluorescens. J Environ Sci Health 40:571–583. doi:10.1081/PFC-200061545

    Google Scholar 

  • SAS Institute (2003) SAS 9.1. Institute Inc., Cary, NC, USA

  • Schmid A, Dordick J, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 11:258–268. doi:10.1038/35051736

    Article  Google Scholar 

  • Schwarzenbach R, Egli T, Hofstetter T (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136. doi:10.1146/annurev-environ-100809-125342

    Article  Google Scholar 

  • Sethunathan N, Yoshida T (1973) A Flavobacterium sp. that degrades diazinon and parathion. Can J Microbiol 19:873–875. doi:10.1139/m73-138

    Article  PubMed  CAS  Google Scholar 

  • Sheeja RY, Murugesan T (2002) Mass transfer studies on the biodegradation of phenols in up-flow packed bed reactors. J Hazard Mater 9:287–301. doi:10.1016/S0304-3894(01)00319-3

    Article  Google Scholar 

  • Singh B (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–164. doi:10.1038/nrmicro2050

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471. doi:10.1111/j.1574-6976.2006.00018.x

    Article  PubMed  CAS  Google Scholar 

  • Sorgob MA, Vilanova E (2002) Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett 128(1–3):215–228. doi:10.1016/S0378-4274(01)00543-4

    Google Scholar 

  • Struthers JK, Jayachandran K, Moorman TB (1998) Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. Appl Environ Microbiol 64(9):3368–3375

    Google Scholar 

  • Yair S, Ofer B, Arik E, Shai S, Yossi R, Tzvika D, Amir K (2008) Organophosphate degrading microorganisms and enzymes as biocatalysts in environmental and personal decontamination applications. Crit Rev Biotechnol 28(4):265–275. doi:10.1080/07388550802455742

    Article  PubMed  CAS  Google Scholar 

  • Yáñez-Ocampo G, Sanchez-Salinas E, Jimenez-Tobon GA, Penninckx M, Ortiz-Hernández ML (2009) Removal of two organophosphate pesticides by a bacterial consortium immobilized in alginate or tezontle. J Hazard Mater 168:1554–1561. doi:10.1016/j.jhazmat.2009.03.047

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Laura Ortiz-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yáñez-Ocampo, G., Sánchez-Salinas, E. & Ortiz-Hernández, M.L. Removal of methyl parathion and tetrachlorvinphos by a bacterial consortium immobilized on tezontle-packed up-flow reactor. Biodegradation 22, 1203–1213 (2011). https://doi.org/10.1007/s10532-011-9475-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-011-9475-z

Keywords

Navigation