, Volume 22, Issue 5, pp 921–929 | Cite as

Bacterial Pu(V) reduction in the absence and presence of Fe(III)–NTA: modeling and experimental approach

  • Randhir P. Deo
  • Bruce E. Rittmann
  • Donald T. Reed
Original Paper


Plutonium (Pu), a key contaminant at sites associated with the manufacture of nuclear weapons and with nuclear-energy wastes, can be precipitated to “immobilized” plutonium phases in systems that promote bioreduction. Ferric iron (Fe3+) is often present in contaminated sites, and its bioreduction to ferrous iron (Fe2+) may be involved in the reduction of Pu to forms that precipitate. Alternately, Pu can be reduced directly by the bacteria. Besides Fe, contaminated sites often contain strong complexing ligands, such as nitrilotriacetic acid (NTA). We used biogeochemical modeling to interpret the experimental fate of Pu in the absence and presence of ferric iron (Fe3+) and NTA under anaerobic conditions. In all cases, Shewanella alga BrY (S. alga) reduced Pu(V)(PuO2 +) to Pu(III), and experimental evidence indicates that Pu(III) precipitated as PuPO4(am). In the absence of Fe3+ and NTA, reduction of PuO2 + was directly biotic, but modeling simulations support that PuO2 + reduction in the presence of Fe3+ and NTA was due to an abiotic stepwise reduction of PuO2 + to Pu4+, followed by reduction of Pu4+ to Pu3+, both through biogenically produced Fe2+. This means that PuO2 + reduction was slowed by first having Fe3+ reduced to Fe2+. Modeling results also show that the degree of PuPO4(am) precipitation depends on the NTA concentration. While precipitation out-competes complexation when NTA is present at the same or lower concentration than Pu, excess NTA can prevent precipitation of PuPO4(am).


Plutonium Shewanella alga Bacterial reduction NTA Iron Bioreduction Modeling 



The authors are grateful to Los Alamos National Laboratory for laboratory facilities. The research was supported, in part, by Environmental Remediation Sciences Program (ERSP) of the United States Department of Energy.


  1. Banaszak JE, Reed DT, Rittmann BE (1998) Speciation-dependent toxicity of neptunium(V) toward Chelatobacter heintzii. Environ Sci Technol 32(8):1085–1091CrossRefGoogle Scholar
  2. Banaszak JE, Rittmann BE, Reed DT (1999a) Subsurface interactions of actinide species and microorganisms: implications for the bioremediation of actinide-organic mixtures. J Radioanal Nucl Chem 241(2):385–435CrossRefGoogle Scholar
  3. Banaszak JE, Webb SM, Rittmann BE, Gaillard J-F, Reed DT (1999b) In: Wronkiewicz DJ, Lee JH (eds) Scientific basis for nuclear waste management XXII, vol 556, pp 1141–1149Google Scholar
  4. Boukhalfa H, Icopini GA, Reilly SD, Neu MP (2007) Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1. Appl Environ Microbiol 73(18):5897–5903PubMedCrossRefGoogle Scholar
  5. Caccavo F, Blakemore RP, Lovley DR (1992) A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hamshire. Appl Environ Microbiol 58(10):3211–3216PubMedGoogle Scholar
  6. Caccavo F, Ramsing NB, Costerton JW (1996) Morphological and metabolic responses to starvation by the dissimilatory metal-reducing bacterium Shewanella alga BrY. Appl Environ Microbiol 62(12):4678–4682PubMedGoogle Scholar
  7. Choppin GR (2003) Actinide speciation in the environment. Radiochim Acta 91:645–649CrossRefGoogle Scholar
  8. Cleveland JM, Rees TF (1981) Characterization of plutonium in Maxey Flats radioactive trench leachates. Science 212(4502):1506–1509PubMedCrossRefGoogle Scholar
  9. Farrell J, Bostick WD, Jarabek RJ, Fiedor JN (1999) Uranium removal from ground water using zero valent iron media. Ground Water 37(4):618–624CrossRefGoogle Scholar
  10. Francis AJ (2007) Microbial mobilization and immobilization of plutonium. J Alloy Compd 444:500–505CrossRefGoogle Scholar
  11. Francis AJ, Dodge CJ (2008) Bioreduction of uranium(VI) complexed with citric acid by Clostridia affects its structure and solubility. Environ Sci Technol 42(22):8277–8282PubMedCrossRefGoogle Scholar
  12. Francis AJ, Dodge CJ, Gillow JB (2008) Reductive dissolution of Pu(IV) by Clostridium sp under anaerobic conditions. Environ Sci Technol 42(7):2355–2360PubMedCrossRefGoogle Scholar
  13. Gorby YA, Lovley DR (1992) Enzymatic uranium precipitation. Environ Sci Technol 26(1):205–207CrossRefGoogle Scholar
  14. Gustafsson JP (2009) Visual MINTEQ: version 2.61. KTH, Department of Land and Water Resources Engineering, StockholmGoogle Scholar
  15. Haas JR, Dichristina TJ (2002) Effects of Fe(III) chemical speciation on dissimilatory Fe(III) reduction by Shewanella putrefaciens. Environ Sci Technol 36(3):373–380PubMedCrossRefGoogle Scholar
  16. Hacherl EL, Kosson DS (2003) A kinetic model for bacterial Fe(III) oxide reduction in batch cultures. Water Resour Res 39(4):1098. doi: 10.1029/2002WR001312 Google Scholar
  17. Icopini GA, Lack JG, Hersman LE, Neu MP, Boukhalfa H (2009) Plutonium(V/VI) reduction by the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1. Appl Environ Microbiol 75(11):3641–3647PubMedCrossRefGoogle Scholar
  18. Liu CX, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI) Cr(VI) and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 80(6):637–649PubMedCrossRefGoogle Scholar
  19. Lovley DR (1993) Dissimilatory metal reduction. Annu Rev Microbiol 47:263–290PubMedCrossRefGoogle Scholar
  20. Lovley DR, Widman PK, Woodward JC, Phillips EJP (1993) Reduction of uranium by cytochrome-C3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59(11):3572–3576PubMedGoogle Scholar
  21. National Research Council (NRC) (2000) Natural attenuation for groundwater remediation. National Academy Press, Washington, DCGoogle Scholar
  22. Neu MP, Ruggiero CE, Francis AJ (2002) In: Hoffman DC (ed) Advances in plutonium chemistry 1967–2000. University Research Alliance and American Nuclear Society, La Grange Park, pp 169–211Google Scholar
  23. Neu MP, Icopini GA, Boukhalfa H (2005) Plutonium speciation affected by environmental bacteria. Radiochim Acta 93(11):705–714CrossRefGoogle Scholar
  24. Rai D, Gorby YA, Fredrickson JK, Moore DA, Yui M (2002) Reductive dissolution of PuO2(am): the effect of Fe(II) and hydroquinone. J Solut Chem 31(6):433–453CrossRefGoogle Scholar
  25. Reed DT, Lucchini JF, Aase SB, Kropf AJ (2006) Reduction of plutonium(VI) in brine under subsurface conditions. Radiochim Acta 94(9–11):591–597CrossRefGoogle Scholar
  26. Reed DT, Pepper SE, Richmann MK, Smith G, Deo R, Rittmann BE (2007) Subsurface bio-mediated reduction of higher-valent uranium and plutonium. J Alloy Compd 444:376–382CrossRefGoogle Scholar
  27. Reed DT, Deo RP, Rittmann BE (2010) Subsurface interactions of actinide species with microorganisms. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, vol 6. Springer, New York, pp 3595–3663Google Scholar
  28. Renshaw JC, Law N, Geissler A, Livens FR, Lloyd JR (2009) Impact of the Fe(III)-reducing bacteria Geobacter sulfurreducens and Shewanella oneidensis on the speciation of plutonium. Biogeochemistry 94(2):191–196CrossRefGoogle Scholar
  29. Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. The McGraw-Hill Companies, Inc, New YorkGoogle Scholar
  30. Rittmann BE, Banaszak JE, Reed DT (2002a) Reduction of Np(V) and precipitation of Np(IV) by an anaerobic microbial consortium. Biodegradation 13(5):329–342PubMedCrossRefGoogle Scholar
  31. Rittmann BE, Banaszak JE, VanBriesen JM, Reed DT (2002b) Mathematical modeling of precipitation and dissolution reactions in microbiological systems. Biodegradation 13(4):239–250PubMedCrossRefGoogle Scholar
  32. Rusin PA, Quintana L, Brainard JR, Strietelmeier BA, Tait CD, Ekberg SA, Palmer PD, Newton TW, Clark DL (1994) Solubilization of plutonium hydrous oxide by iron-reducing bacteria. Environ Sci Technol 28(9):1686–1690CrossRefGoogle Scholar
  33. Smith RM, Martell AE, Motekaitis RJ (2004) NIST critically selected stability constants of metal complexes database, version 4.0. NIST: Standard Reference Data Program, Gaithersburg, MDGoogle Scholar
  34. Songkasiri W, Reed DT, Rittmann BE (2002) Bio-sorption of neptunium(V) by Pseudomonas fluorescens. Radiochim Acta 90(9–11):785–789CrossRefGoogle Scholar
  35. Truex MJ, Peyton BM, Valentine NB, Gorby YA (1997) Kinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions. Biotechnol Bioeng 55(3):490–496PubMedCrossRefGoogle Scholar
  36. VanBriesen JM, Rittmann BE (1999) Modeling speciation effects on biodegradation in mixed metal/chelate systems. Biodegradation 10(5):315–330CrossRefGoogle Scholar
  37. VanBriesen JM, Rittmann BE (2000a) Mathematical description of microbiological reactions involving intermediates. Biotechnol Bioeng 67(1):35–52PubMedCrossRefGoogle Scholar
  38. VanBriesen JM, Rittmann BE (2000b) Modeling biogeochemical interactions in co-contaminant systems. Abstr Pap Am Chem Soc 220:U338–U338Google Scholar
  39. Von Gunten HR, Benes P (1995) Speciation of radionuclides in the environment. Radiochim Acta 69(1):1–29Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Randhir P. Deo
    • 1
  • Bruce E. Rittmann
    • 2
  • Donald T. Reed
    • 3
  1. 1.Chemistry Department, Division of Natural Sciences, College of Natural and Applied SciencesUniversity of GuamGuamUSA
  2. 2.Center for Environmental Biotechnology, Biodesign InstituteArizona State UniversityTempeUSA
  3. 3.Los Alamos National Laboratory, Environmental and Earth Sciences DivisionCarlsbad Environmental Monitoring and Research CenterCarlsbadUSA

Personalised recommendations