Skip to main content
Log in

Denitrification of a landfill leachate with high nitrate concentration in an anoxic rotating biological contactor

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The denitrification performance of a lab-scale anoxic rotating biological contactor (RBC) using landfill leachate with high nitrate concentration was evaluated. Under a carbon to nitrogen ratio (C/N) of 2, the reactor achieved N-NO3 removal efficiencies above 95% for concentrations up to 100 mg N-NO3  l−1. The highest observed denitrification rate was 55 mg N-NO3  l−1 h−1 (15 g N-NO3  m−2 d−1) at a nitrate concentration of 560 mg N-NO3  l−1. Although the reactor has revealed a very good performance in terms of denitrification, effluent chemical oxygen demand (COD) concentrations were still high for direct discharge. The results obtained in a subsequent experiment at constant nitrate concentration (220 mg N-NO3  l−1) and lower C/N ratios (1.2 and 1.5) evidenced that the organic matter present in the leachate was non-biodegradable. A phosphorus concentration of 10 mg P-PO4 3− l−1 promoted autotrophic denitrification, revealing the importance of phosphorus concentration on biological denitrification processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alves C, Melo L, Vieira M (2002) Influence of medium composition on the characteristics of a denitrifying biofilm formed by Alcaligenes denitrificans in a fluidised bed reactor. Process Biochem 37:837–845. doi:10.1016/S0032-9592(01)00282-5

    Article  CAS  Google Scholar 

  • APHA, AWWA, WPCF (1989) Standard methods for the examination of water and wastewater, American Public Health Association, American Water Works Association, 17th edn. Water Pollution Control Federation, Washington, DC

    Google Scholar 

  • Calli B, Mertoglu B, Inanc B (2005) Landfill leachate management in Istanbul: applications and alternatives. Chemosphere 59:819–829. doi:10.1016/j.chemosphere.2004.10.064

    Article  PubMed  CAS  Google Scholar 

  • Cema G, Wiszniowski J, Zabczynski S, Zablocka-Godlewska E, Raszka A, Surmacz-Gorska J (2007) Biological nitrogen removal from landfill leachate by deammonification assisted by heterotrophic denitrification in a rotating biological contactor (RBC). Water Sci Technol 55:35–42. doi:10.2166/wst.2007.239

    PubMed  CAS  Google Scholar 

  • Chen S, Sun D, Chung J (2008) Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic-aerobic moving-bed biofilm reactor system. Waste Manage 28:339–346. doi:10.1016/j.wasman.2007.01.004

    Article  CAS  Google Scholar 

  • Chen Y, Wu S, Wu W, Sun H, Ding Y (2009) Denitrification capacity of bioreactors filled with refuse at different landfill ages. J Hazard Mater 172:159–165. doi:10.1016/j.jhazmat.2009.06.150

    Article  PubMed  CAS  Google Scholar 

  • Comission European (1991) European Council Directive 91/271/EEC of 21 May 1991 on urban waste water treatment. Off J Eur Commun L 135:40–52

    Google Scholar 

  • Elefsiniotis P, Wareham D (2007) Utilization patterns of volatile fatty acids in the denitrification reaction. Enzyme Microb Technol 41:92–97. doi:10.1016/j.enzmictec.2006.12.006

    Article  CAS  Google Scholar 

  • Gálvez A, Giusti L, Zamorano M, Ramos-Ridao A (2009) Stability and efficiency of biofilms for landfill leachate treatment. Bioresour Technol 100:4895–4898. doi:10.1016/j.biortech.2009.05.014

    Article  PubMed  Google Scholar 

  • Hasar H, Unsal SA, Ipek U, Karatas S, Cinar O, Yaman C, Kinaci C (2009) Stripping/flocculation/membrane bioreactor/reverse osmosis treatment of municipal landfill leachate. J Hazard Mater 171:309–317. doi:10.1016/j.jhazmat.2009.06.003

    Article  PubMed  CAS  Google Scholar 

  • Her JJ, Huang JS (1995) Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresour Technol 54:45–51. doi:10.1016/0960-8524(95)00113-1

    Article  CAS  Google Scholar 

  • Hong K, Hu LF, Shen DS (1993) Greenhouse gas—N2O production during denitrification in wastewater treatment. Water Sci Technol 28:203–207

    Google Scholar 

  • Kim I, Son J (2000) Impact of COD/N/S ratio on denitrification by the mixed cultures of sulfate reducing bacteria and sulfur denitrifying bacteria. Water Sci Technol 42:69–76

    Google Scholar 

  • Koenig A, Liu LH (1996) Autotrophic denitrification of landfill leachate using elemental sulphur. Water Sci Technol 34:469–476. doi:10.1016/0273-1223(96)00680-4

    CAS  Google Scholar 

  • Kulikowska D, Józwiak T, Kowal P, Ciesielski S (2010) Municipal landfill leachate nitrification in RBC biofilm—process efficiency and molecular analysis of microbial structure. Bioresour Technol 101:3400–3405. doi:10.1016/j.biortech.2009.12.050

    Article  PubMed  CAS  Google Scholar 

  • Lazarova V, Manem J (1995) Biofilm characterization and activity analysis in water and wastewater treatment. Water Res 29:2227–2245. doi:10.1016/0043-1354(95)00054-O

    Article  CAS  Google Scholar 

  • Lukow T, Diekmann H (1997) Aerobic denitrification by a newly isolated heterotrophic bacterium strain TL1. Biotechnol Lett 19:1157–1159. doi:10.1023/A:1018465232392

    Article  CAS  Google Scholar 

  • Martienssen M, Schops R (1997) Biological treatment of leachate from solid waste landfill sites—alterations in the bacterial community during the denitrification process. Water Res 31:1164–1170. doi:10.1016/S0043-1354(96)00364-8

    Article  CAS  Google Scholar 

  • McCarty P, Beck L, Amant P (1969) Biological denitrification of wastewaters by addition of organic materials. In: Purdue University (ed) Proceedings of the 24th Purdue Industrial Waste Conference Indiana, USA, pp 1271–1285

  • Mohseni-Bandpi A, Elliott D, Momeny-Mazdeh A (1999) Denitrification of groundwater using acetic acid as a carbon source. Water Sci Technol 40:53–59. doi:10.1016/S0273-1223(99)00430-8

    CAS  Google Scholar 

  • Moreno B, Gomez M, Gonzalez-Lopez J, Hontoria E (2005) Inoculation of a submerged filter for biological denitrification of nitrate polluted groundwater: a comparative study. J Hazard Mater 117:141–147. doi:10.1016/j.jhazmat.2004.09.027

    Article  PubMed  CAS  Google Scholar 

  • Payne W (1973) Reduction of nitrogenous oxides by microorganisms. Bacteriol Rev 37:409–452

    PubMed  CAS  Google Scholar 

  • Reyes-Avila J, Razo-Flores E, Gomez J (2004) Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Water Res 38:3313–3321. doi:10.1016/j.watres.2004.04.035

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Yang Q, Peng Y, Shi X, Wang S, Zhang S (2009) Nitrite accumulation during the denitrification process in SBR for the treatment of pre-treated landfill leachate. Chin J Chem Eng 17:1027–1031. doi:10.1016/S1004-9541(08)60312-2

    Article  CAS  Google Scholar 

  • Tam N, Wong Y, Leung G (1992) Effect of exogenous carbon sources on removal of inorganic nutrient by the nitrification-denitrification process. Water Res 26:1229–1236. doi:10.1016/0043-1354(92)90183-5

    Article  CAS  Google Scholar 

  • Tchobanoglous G, Burton F (1991) Wastewater engineering: treatment, disposal and reuse, 3rd edn. Metcalf and Eddy, Inc, McGraw-Hill Inc, New York

    Google Scholar 

  • Teixeira P, Oliveira R (2000) Denitrification by Alcaligenes denitrificans in a closed rotating biological contactor. Biotechnol Lett 22:1789–1792. doi:10.1023/A:1005606421379

    Article  CAS  Google Scholar 

  • Terada A, Hibiya K, Nagai J, Tsuneda S, Hirata A (2003) Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment. J Biosci Bioeng 95:170–178. doi:10.1016/S1389-1723(03)80124-X

    PubMed  CAS  Google Scholar 

  • van Rijn J, Tal Y, Schreier HJ (2006) Denitrification in recirculating systems: theory and applications. Aquacult Eng 34:364–376. doi:10.1016/j.aquaeng.2005.04.004

    Article  Google Scholar 

  • Veiga MC, Mendez R, Lema JM (1992) Development and stability of biofilms in bioreactors. In: Melo LF, Bott TR, Fletcher M, Capdeville B (eds) Biofilms—science and technology. Kluwer Academic Publishers, Netherlands, pp 421–434

    Google Scholar 

  • Wang C, Lee P, Kumar M, Huang Y, Sung S, Lin J (2010) Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant. J Hazard Mater 175:622–628. doi:10.1016/j.jhazmat.2009.10.052

    Article  PubMed  CAS  Google Scholar 

  • Welander U, Henrysson T, Welander T (1998) Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Water Res 32:1564–1570. doi:10.1016/S0043-1354(97)00351-5

    Article  CAS  Google Scholar 

  • Xu Z, Zeng G, Yang Z, Xiao Y, Cao M, Sun H, Ji L, Chen Y (2010) Biological treatment of landfill leachate with the integration of partial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification. Bioresour Technol 101:79–86. doi:10.1016/j.biortech.2009.07.082

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Susana Cortez and Pilar Teixeira are grateful to Fundação para a Ciência e Tecnologia (FCT) for financial support through the grants SFRH/BD/24715/2005 and SFRH/BPD/26803/2006, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosário Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortez, S., Teixeira, P., Oliveira, R. et al. Denitrification of a landfill leachate with high nitrate concentration in an anoxic rotating biological contactor. Biodegradation 22, 661–671 (2011). https://doi.org/10.1007/s10532-010-9439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9439-8

Keywords

Navigation