Skip to main content
Log in

Biodegradation of polyfluorinated biphenyl in bacteria

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Fluorinated aromatic compounds are significant environmental pollutants, and microorganisms play important roles in their biodegradation. The effect of fluorine substitution on the transformation of fluorobiphenyl in two bacteria was investigated. Pseudomonas pseudoalcaligenes KF707 and Burkholderia xenovorans LB400 used 2,3,4,5,6-pentafluorobiphenyl and 4,4′-difluorobiphenyl as sole sources of carbon and energy. The catabolism of the fluorinated compounds was examined by gas chromatography–mass spectrometry and fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR), and revealed that the bacteria employed the upper pathway of biphenyl catabolism to degrade these xenobiotics. The novel fluorometabolites 3-pentafluorophenyl-cyclohexa-3,5-diene-1,2-diol and 3-pentafluorophenyl-benzene-1,2-diol were detected in the supernatants of biphenyl-grown resting cells incubated with 2,3,4,5,6-pentafluorobiphenyl, most likely as a consequence of the actions of BphA and BphB. 4-Fluorobenzoate was detected in cultures incubated with 4,4′-difluorobiphenyl and 19F NMR analysis of the supernatant from P. pseudoalcaligenes KF707 revealed the presence of additional water-soluble fluorometabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amadio J, Murphy CD (2010) Biotransformation of fluorobiphenyl by Cunninghamella elegans. Appl Microbiol Biotechnol 86:345–351

    Article  PubMed  CAS  Google Scholar 

  • Arnett CM, Parales JV, Haddock JD (2000) Influence of chlorine substituents on rates of oxidation of chlorinated biphenyls by the biphenyl dioxygenase of Burkholderia sp strain LB400. Appl Environ Microbiol 66:2928–2933

    Article  PubMed  CAS  Google Scholar 

  • Billingsley KA, Backus SM, Juneson C, Ward OP (1997) Comparison of the degradation patterns of polychlorinated biphenyl congoners in Aroclors by Pseudomonas strain LB400 after growth on various carbon sources. Can J Microbiol 43:1172–1179

    Article  PubMed  CAS  Google Scholar 

  • Boersma MG, Solyanikova IP, Van Berkel WJH, Vervoort J, Golovleva LA, Rietjens I (2001) F-19 NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols. J Ind Microbiol Biotechnol 26:22–34

    Article  CAS  Google Scholar 

  • Boersma FGH, McRoberts WC, Cobb SL, Murphy CD (2004) A F-19 NMR study of fluorobenzoate biodegradation by Sphingomonas sp HB-1. FEMS Microbiol Lett 237:355–361

    Article  PubMed  CAS  Google Scholar 

  • Brooks SJ, Doyle EM, Hewage C, Malthouse JPG, Duetz W, O’Connor KE (2004) Biotransformation of halophenols using crude cell extracts of Pseudomonas putida F6. Appl Microbiol Biotechnol 64:486–492

    Article  PubMed  CAS  Google Scholar 

  • Cobb SL, Murphy CD (2009) F-19 NMR applications in chemical biology. J Fluorine Chem 130:132–143

    Article  CAS  Google Scholar 

  • Elkik E, Imbeaux-Oudotte M (1975) Formyl fluoro cétones et esters. II. hydroxyalcoylation: stéréochimie et déshydratation des fluorhydrines obtenues. B Soc Chim Fr 7–8:1633–1638

    Google Scholar 

  • Ferreira MIM, Marchesi JR, Janssen DB (2008) Degradation of 4-fluorophenol by Arthrobacter sp. strain IF1. Appl Microbiol Biotechnol 78:709–717

    Article  PubMed  CAS  Google Scholar 

  • Gibson DT, Cruden DL, Haddock JD, Zylstra GJ, Brand JM (1993) Oxidation of polychlorinated biphenyls by Pseudomonas pseudoalcaligenes KF707. J Bacteriol 175:4561–4564

    PubMed  CAS  Google Scholar 

  • Green NA, Meharg AA, Till C, Troke J, Nicholson JK (1999) Degradation of 4-fluorobiphenyl by mycorrhizal fungi as determined by F-19 nuclear magnetic resonance spectroscopy and C-14 radiolabelling analysis. Appl Environ Microbiol 65:4021–4027

    PubMed  CAS  Google Scholar 

  • Kawasaki T, Ichige T, Kitazume T (1998) An efficient stereoselective synthesis of fluorinated trisubstituted alkenes. J Org Chem 63:7525–7528

    Article  PubMed  CAS  Google Scholar 

  • Key BD, Howell RD, Criddle CS (1997) Fluorinated organics in the biosphere. Environ Sci Technol 31:2445–2454

    Article  CAS  Google Scholar 

  • Kirsten E, Sharma ML, Kun E (1978) Molecular toxicology of (−)-erythro-fluorocitrate — selective-inhibition of citrate transport in mitochondria and binding of fluorocitrate to mitochondrial proteins. Mol Pharmacol 14:172–184

    PubMed  CAS  Google Scholar 

  • Leung LS, Frey PA (1978) Fluoropyruvate —unusual substrate for Escherichia coli pyruvate dehydrogenase. Biochem Biophys Res Commun 81:274–279

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Watanabe N, Mori E, Ishihara M, Yamaura T, Aoyama M, Ikawa H, Kobayashi H (1996) 4-Fluorobiphenyl derivatives. US Patent 5,460,523

    Google Scholar 

  • Meyer JJM, O’Hagan D (1992) Conversion of fluoropyruvate to fluoroacetate by Dichapetalum-cymosum. Phytochemistry 31:499–501

    Article  CAS  Google Scholar 

  • Murphy CD, Quirke S, Balogun O (2008) Degradation of fluorobiphenyl by Pseudomonas pseudoalcaligenes KF707. FEMS Microbiol Lett 286:45–49

    Article  PubMed  CAS  Google Scholar 

  • Murphy CD, Clark BR, Amadio J (2009) Metabolism of fluoroorganic compounds in microorganisms: impacts for the environment and the production of fine chemicals. Appl Microbiol Biotechnol 84:617–629

    Article  PubMed  CAS  Google Scholar 

  • Pieper DH (2005) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67:170–191

    Article  PubMed  CAS  Google Scholar 

  • Potrawfke T, Lohnert TH, Timmis KN, Wittich RM (1998) Mineralization of low-chlorinated biphenyls by Burkholderia sp. strain LB400 and by a two membered consortium upon directed interspecies transfer of chlorocatechol pathway genes. Appl Microbiol Biotechnol 50:440–446

    Article  CAS  Google Scholar 

  • Romer M, Krause J, Weber G (1984) 4-fluorophenyl derivatives, their preparation, and dielectrics and electro-optical display element containing them. US Patent 4,473,487

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Enterprise Ireland. We thank Jennifer Power for assistance with the resting cell experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cormac D. Murphy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, D., Clark, B.R. & Murphy, C.D. Biodegradation of polyfluorinated biphenyl in bacteria. Biodegradation 22, 741–749 (2011). https://doi.org/10.1007/s10532-010-9411-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9411-7

Keywords

Navigation