Skip to main content

Advertisement

Log in

Isolation and characterization of an abamectin-degrading Burkholderia cepacia-like GB-01 strain

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Abamectin is widely used in agriculture as an insecticide and in veterinary as an anti-parasitic agent, and has caused great environmental pollution by posing potential risk to non-target soil invertebrates and nearby aquatic systems. A bacterium designated GB-01, which was capable of degrading abamectin, was isolated from soil by enrichment culture method. On the basis of morphological, physiological and biochemical characteristics, combined with phylogenetic analysis of 16S rRNA gene, the bacterium GB-01 was identified as Burkholderia cepacia-like species. The bacterium GB-01 was able to utilize abamectin as its sole carbon source for growth, and could degrade more than 90% of abamectin at initial concentrations of 50 and 100 mg l−1 in mineral salt medium in 30 and 36 h, respectively. The longer degradation cycle was observed with abamectin concentrations higher than 100 mg l−1. Optimal growth temperatures and pH values with highest degradation rate were 30–35°C and 7–8, respectively. Two new degradation products were identified and characterized by high performance liquid chromatography-tandem mass spectrometry (HPLC–MS/MS) based mass spectral data and a plausible partial degradation pathway of abamectin was proposed. This is the first report in which an abamectin-degrading Burkholderia species isolated from soil was identified and characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Balashova NV, Kosheleva IA, Golovchenko NP, Boronin AM (1999) Phenanthrene metabolism by Pseudomonas and Burkholderia strains. Process Biochem 35:291–296

    Article  CAS  Google Scholar 

  • Baldwin A, Mahenthiralingam E, Thickett KM, Honeybourne D, Maiden MC, Govan JR, Speert DP, Lipuma JJ, Vandamme P, Dowson CG (2005) Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J Clin Microbiol 43:4665–4673

    Article  CAS  PubMed  Google Scholar 

  • Bhushan B, Chauhan A, Samanta SK, Jain RK (2000) Kinetics of biodegradation of p-nitrophenol by different bacteria. Biochem Biophys Res Commun 274:626–630

    Article  CAS  PubMed  Google Scholar 

  • Bull DL, Ivie GW, MacConnell JG, Gruber VF, Ku C, Arison BH, Stevenson JM, VandenHeuvel WJA (1984) Fate of avermectin B1a in soil and plants. J Agric Food Chem 32:94–102

    Article  CAS  Google Scholar 

  • Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R, Kong YL, Monaghan RL, Olson G, Putter I, Tunac JB, Wallick H, Stapley EO, Oiwa R, Omura S (1979) Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother 15:361–367

    CAS  PubMed  Google Scholar 

  • Chaillan F, Le Fleche A, Bury E, Phantavong YH, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155:587–595

    Article  CAS  PubMed  Google Scholar 

  • Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729

    Article  CAS  PubMed  Google Scholar 

  • Coenye T, Vandamme P, LiPuma JJ, Govan JR, Mahenthiralingam E (2003) Updated version of the Burkholderia cepacia complex experimental strain panel. J Clin Microbiol 41:2797–2798

    Article  PubMed  Google Scholar 

  • Diao X, Jensen J, Hansen AD (2007) Toxicity of the anthelmintic abamectin to four species of soil invertebrates. Environ Pollut 148:514–519

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn P, Ferguson PL, Pérez S, Aga DS (2005) Application of ion trap-MS with H/D exchange and QqTOF-MS in the identification of microbial degradates of trimethoprim in nitrifying activated sludge. Anal Chem 77:4176–4184

    Article  CAS  PubMed  Google Scholar 

  • Escalada JP, Gianotti J, Pajares A, Massad WA, Amat-Guerri F, Garcia NA (2008) Photodegradation of the acaricide abamectin: a kinetic study. J Agric Food Chem 56:7355–7359

    Article  CAS  PubMed  Google Scholar 

  • Gianelli L, Mellerio GG, Siviero E, Rossi A, Cabri W, Sogli L (2000) Mass spectrometry of avermectins: structural determination of two new derivatives of Ivermectin B1a. Rapid Commun Mass Spectrom 14:1260–1265

    Article  CAS  PubMed  Google Scholar 

  • Gruber VF, Halley BA, Hwang SC, Ku CC (1990) Mobility of avermectin B1a in soil. J Agric Food Chem 38:886–890

    Article  CAS  Google Scholar 

  • Haghedooren E, Raju VSK, Dehouck P, Govaerts C, Schepdael AV, Hoogmartens J, Adams E (2006) Investigation of degradation products in a topical gel containing erythromycin and benzoyl peroxide by liquid chromatography-mass spectrometry. J Pharm Biomed Anal 41:165–175

    Article  CAS  PubMed  Google Scholar 

  • Haigler BE, Pettigrew CA, Spain JC (1992) Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150. Appl Environ Microbiol 58:2237–2244

    CAS  PubMed  Google Scholar 

  • Halley BA, VandenHeuvel WJ, Wislocki PG (1993) Environmental effects of the usage of avermectins in livestock. Vet Parasitol 48:109–125

    Article  CAS  PubMed  Google Scholar 

  • Henry DA, Mahenthiralingam E, Vandamme P, Coenye T, Speert DP (2001) Phenotypic methods for determining genomovar status of the Burkholderia cepacia complex. J Clin Microbiol 39:1073–1078

    Article  CAS  PubMed  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of detrerminative bacteriology, 9th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Inguva S, Shreve GS (1999) Biodegradation kinetics of trichloroethylene and 1, 2-dichloroethane by Burkholderia (Pseudomonas) cepacia PR131 and Xanthobacter autotrophhicus GJ10. Int Biodeterior Biodegrad 43:57–61

    Article  CAS  Google Scholar 

  • Jensen J, Diao X, Scott-fordsmand JJ (2007) Sub-lethal toxicity of the antiparasitic abamectin on earthworms and the application of neutral red retention time as a biomarker. Chemosphere 68:744–750

    Article  CAS  PubMed  Google Scholar 

  • Johnson GR, Olsen RH (1997) Multiple pathways for toluene degradation in Burkholderia sp. strain JS150. Appl Environ Microbiol 63:4047–4052

    CAS  PubMed  Google Scholar 

  • Kamel A, Al-Dosary S, Ibrahim S, Ahmed MA (2007) Degradation of the acaricides abamectin, flufenoxuron and amitraz on Saudi Arabian dates. Food Chem 100:1590–1593

    Article  CAS  Google Scholar 

  • Kolar L, Flajs VC, Kuzner J, Marc I, Pogacnik M, Bidovec A, van Gestel CA, Kozuh Erzen N (2006) Time profile of abamectin and doramectin excretion and degradation in sheep feces. Environ Pollut 144:197–202

    Article  CAS  PubMed  Google Scholar 

  • Kolar L, Kozuh Erzen N, Hogerwerf L, van Gestel CA (2008) Toxicity of abamectin and doramectin to soil invertebrates. Environ Pollut 151:182–189

    Article  CAS  PubMed  Google Scholar 

  • Kozuh Erzen N, Kolar L, Flajs VC, Kuzner J, Marc I, Pogacnik M (2005) Degradation of abamectin and doramectin on sheep grazed pasture. Ecotoxicology 14:627–635

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley, London, pp 115–175

    Google Scholar 

  • Leahy JG, Tracy KD, Eley MH (2003) Degradation of volatile hydrocarbons from steam-classified solid waste by a mixture of aromatic hydrocarbon-degrading bacteria. Biotechnol Lett 25:479–483

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Song C, Yang J, Guo J, Xing L (2008) Biodegradation of avermectin by Bacteroidetes endosymbiont strain LYH. World J Microbiol Biotechnol 24:361–366

    Article  CAS  Google Scholar 

  • Lofgren CS, Williams DF (1982) Avermectin B1a: highly potent inhibitor of reproduction by queens of the red imported fire ant (Hymenoptera: Formicidae). J Econ Entomol 75:798–803

    CAS  PubMed  Google Scholar 

  • Lumaret JP, Errouissi F (2002) Use of anthelmintics in herbivores and evaluation of risks for the non target fauna of pastures. Vet Res 33:547–562

    Article  CAS  PubMed  Google Scholar 

  • Mahenthiralingam E, Vandamme P (2005) Taxonomy and pathogenesis of the Burkholderia cepacia complex. Chron Respir Dis 2:209–217

    Article  CAS  PubMed  Google Scholar 

  • Mahenthiralingam E, Baldwin A, Dowson CG (2008) Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104:1539–1551

    Article  CAS  PubMed  Google Scholar 

  • Martin RJ, Robertson AP, Wolstenholme AJ (2002) Mode of action of the macrocyclic lactones. In: Vercruysse J, Rew RS (eds) Macrocyclic lactones and antiparasitic therapy. CAB International, Wallingford, pp 125–162

    Chapter  Google Scholar 

  • Maynard MS, Iwata Y, Wislocki PG, Ku CC, Jacob TA (1989a) Fate of avermectin B1a on citrus fruits. 1. Distribution and magnitude of the avermectin B1a and 14C residue on citrus fruits from a field study. J Agric Food Chem 37:178–183

    Article  CAS  Google Scholar 

  • Maynard MS, Wislocki PG, Ku CC (1989b) Fate of avermectin B1a in lactating goats. J Agric Food Chem 37:1491–1497

    Article  CAS  Google Scholar 

  • McKellar QA (1997) Ecotoxicology and residues of anthelmintic compounds. Vet Parasitol 72:413–426; discussion 426–435

    Google Scholar 

  • Medana C, Carbone F, Aigotti R, Appendino G, Baiocchi C (2008) Selective analysis of phenolic compounds in propolis by HPLC-MS/MS. Phytochem Anal 19:32–39

    Article  CAS  PubMed  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  CAS  PubMed  Google Scholar 

  • Muller C, Linuma Y, Boge O, Herrmann H (2007) Applications of CE-ESI-MS/MS analysis to structural elucidation of methylenecyclohexane ozonolysis products in the particle phase. Electrophoresis 28:1364–1370

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan LA, Mahenthiralingam E (2005) Biotechnological potential within the genus Burkholderia. Lett Appl Microbiol 41:8–11

    Article  PubMed  CAS  Google Scholar 

  • Olaniran AO, Pillay D, Pillay B (2004) Haloalkane and haloacid dehalogenases from aerobic bacterial isolates indigenous to contaminated sites in Africa demonstrate diverse substrate specificities. Chemosphere 55:27–33

    Article  CAS  PubMed  Google Scholar 

  • Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258

    Article  CAS  PubMed  Google Scholar 

  • Payne GW, Vandamme P, Morgan SH, Lipuma JJ, Coenye T, Weightman AJ, Jones TH, Mahenthiralingam E (2005) Development of a recA gene-based identification approach for the entire Burkholderia genus. Appl Environ Microbiol 71:3917–3927

    Article  CAS  PubMed  Google Scholar 

  • Pesticide manual (1997) Tomlin CD (ed) Crop protection publications, 11th edn. British crop protection council, Surry, pp 3–5

  • Shipp JL, Wang K, Ferguson G (2000) Residual toxicity of avermectin B1 and pyridaben to eight commercially produced beneficial arthropod species used for control of greenhouse pests. Biol Control 17:125–131

    Article  CAS  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S ribosomal-RNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Strong L (1992) Avermectins—a review of their impact on insects of cattle dung. Bull Entomol Res 82:265–274

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Tillmann S, Strompl C, Timmis KN, Abraham WR (2005) Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiol Ecol 52:207–217

    Article  CAS  PubMed  Google Scholar 

  • Tisler T, Kozuh Erzen N (2006) Abamectin in the aquatic environment. Ecotoxicology 15:495–502

    Article  CAS  PubMed  Google Scholar 

  • Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Coopman R, Revets H, Lauwers S, Gillis M, Kersters K, Govan JR (1997) Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 47:1188–1200

    Article  CAS  PubMed  Google Scholar 

  • Vanlaere E, Lipuma JJ, Baldwin A, Henry D, De Brandt E, Mahenthiralingam E, Speert D, Dowson C, Vandamme P (2008a) Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 58:1580–1590

    Article  CAS  PubMed  Google Scholar 

  • Vanlaere E, van der Meer JR, Falsen E, Salles JF, de Brandt E, Vandamme P (2008b) Burkholderia sartisoli sp. nov., isolated from a polycyclic aromatic hydrocarbon-contaminated soil. Int J Syst Evol Microbiol 58:420–423

    Article  CAS  PubMed  Google Scholar 

  • Zhu YJ, Sengonca C, Liu B (2006) Toxicity of biocide GCSC-BtA on arthropod pests under different temperature conditions. J Pestic Sci 79:89–94

    Article  Google Scholar 

Download references

Acknowledgments

This research work was partially supported by China Natural Science and Technology Resources Platform Program (2005DKA21201-2). Shinawar Waseem Ali was financially supported by Higher Education Commission (HEC) Pakistan for studies in China (2005PKC037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-peng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, S.W., Li, R., Zhou, Wy. et al. Isolation and characterization of an abamectin-degrading Burkholderia cepacia-like GB-01 strain. Biodegradation 21, 441–452 (2010). https://doi.org/10.1007/s10532-009-9314-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9314-7

Keywords