Skip to main content
Log in

Olive mill wastewater disposal in evaporation ponds in Sfax (Tunisia): moisture content effect on microbiological and physical chemical parameters

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The study of the isotherms desorption of olive mill wastewater (OMW) was investigated to describe its water activity under different saturated environments. The microbial biodegradation of OMW during its storage in 5 evaporation ponds located in Agareb (Sfax-Tunisia) was carried out during the oil-harvesting year held 105 days in 2004. Gravimetric static method using saturated salt solutions was used and OMW as placed at 30°C and under different water activities ranging from 0.11 to 0.90. Eight models were taken from the literature to describe experimental desorption isotherms. During storage, the evolution of physico-chemical parameters including pH, temperature, evaporation, humidity, total phosphorus, chemical oxygen demand (COD), biological oxygen demand (BOD) and phenols and three microbiological flora (aerobic mesophilic bacteria, yeasts and moulds) were considered. At 30°C, when relative humidity increased in the experimented ponds of 69, 84 and 90%, the evaporation speed decreased from 1.24 × 10−5 to 5 × 10−6 cm3 s−1, from 6 × 10−5 to 7 × 10−6 cm3 s−1 and from 5 × 10−6 to 1.1 × 10−7 cm3 s−1 respectively. The desorption isotherm exhibited a sigmoidal curve corresponding to type II, typical of many organic material. The GAB and Peleg models gave the best fit for describing the relationship between the equilibrium moisture content and water activity in OMW (R 2 = 0.998). During the storage period, the analysis showed an increase of all the physico-chemical parameters studied, except phenols and total phosphorus concentrations. The microbiological study showed the predominance of yeasts and moulds and the decrease of bacteria population after 75 days reflecting both effect of recalcitrant compounds and the water activity on microbial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aktas ES, Imre S, Ersoym L (2001) Characterization and lime treatment of olive mill wastewater. Water Res 35:2336–2340

    Article  PubMed  CAS  Google Scholar 

  • Amaral C, Lucas MS, Coutinho J, Crespei AL, Anjos MDR, Pais C (2008) Microbiological and physic-chemical characterization of olive mill wastewaters from a continous olive mill in Northeastern Portugal. Biores Technol 99:215–7223

    Google Scholar 

  • Ammar E, Ueno S (ed) (1999) Connaissances de base pour la lutte contre la pollution des eaux usées. Association Japonaise pour le contrôle et la protection de l’environnement industriel (AJCPEI), Ammar et Ueno, Sfax, pp 55–182

  • Angelidaki I, Ahring BK (1997) Codigestion of olive oil mill wastewaters with manure, household waste or sewage sludge. Biodegradation 8:221–226

    Article  CAS  Google Scholar 

  • Association Française de la Normalisation (1995) Microbiologie des aliments—Dénombrement des levures et moisissures par comptage des colonies à 25°C—Méthode de routine (NF V08-059), p 10

  • Association Française de la Normalisation Recueil des normes AFNOR (1997) Qualité de l’eau, Méthodes d’analyse (4ème tome). Afnor, Paris

  • Association of Official Analysis Chemists AOAC (1996) Official methods of analysis. In: Nollet LML (ed) Handbook of water analysis. CRC Press, Lewis, pp 45–74

  • Beccari M, Carucci G, Lanz AM, Majone M, Petrangeli Panini M (2002) Removal of molecular fraction of COD and phenolic compounds in an integrated treatment of olive oil mill effluents. Biodegradation 13:401–410

    Article  PubMed  CAS  Google Scholar 

  • Ben Sassi A, Boularbah A, Jaouad A, Walker G, Boussaid A (2006) A comparison of olive oil mill wastewaters (OMW) from three different processes in Morocco. Process Biochem 41:74–78

    Article  CAS  Google Scholar 

  • Box JD (1983) Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res 17:511–525

    Article  CAS  Google Scholar 

  • Brunauer S, Emmlett PH, Tell E (1938) Adsorption of gases in multi-molecular layers. J Am Soc 62:1723–1732

    Article  Google Scholar 

  • Casa R, D’Annibale Pieruccetti F, Stazi SR, Giovannozi S, Lo Cascio B (2003) Reduction of the phenolic components in olive mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf) germinability. Chemosphere 50:959–966

    Article  PubMed  CAS  Google Scholar 

  • Cheremisinoff NP (2002) Handbook of water and wastewater treatment technologies, technology and engineering, 1st edn. Butterworth-Heinemann, Washington, pp 540–630

  • Christian JHB (2000) Drying and reduction of water activity. In: Lund BM, Baird Parker TC, Gould GW (eds) The microbiological safety and quality of food. Springer, Berlin, pp 146–157

    Google Scholar 

  • Chtourou M, Ammar E, Nasri M, Medhioub K (2004) Isolation of a yeast: Trichosporum cutaneum able to use low molecular weight phenolic compounds: application to olive mill waste water treatment. J Chem Technol Biotechnol 79:869–878

    Article  CAS  Google Scholar 

  • Cuevas E (1995) Biology of the below-ground system of tropical dry forests. In: Bullock SH et al. (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 362–383

  • D’Annibale A, Quaratino D, Federici F, Fenice M (2006) Effect of agitation and aeration on the reduction of pollutant load of olive mill wastewater by the white-rot fungus Panus tigrinus. Biochem Eng J 29:243–249

    Google Scholar 

  • DeMan JM (1999) Principles of food chemistry, 3rd edn. Aspen Publication Inc, Gaithersburg, pp 1–32

    Google Scholar 

  • De Temmerman J, Verboven P, Delcour JA, Nicolai B, Ramon H (2008) Drying model for cylindrical pasta shapes using desorption isotherms. J Food Eng 86:414–421

    Article  Google Scholar 

  • Dumoulin E, Bimbenet JJ, Bonazzi C, Daudin JD, Mabonzo E, Turchiuli Ch (2004) Activité de l’eau, teneur en eau des produits alimentaires: isothermes de sorption de l’eau. Industries Alimentaire et Agricoles, 121 Année. Available from http://www.biblioteca.mapya.es/sumarios/i-26-40.pdf

  • Fiorentino A, Gentili A, Isidori M, Monaco P, Nardelli A, Parella A, Temussi G (2002) Removal of phenolics in olive mil wasteaters using the White-rot fungus Pleurotus ostreatus. Water Res 36:4735–4744

    Article  Google Scholar 

  • Garcia-Gomez A, Roig A, Bernal MP (2003) Composting of the solid fraction of olive mill wastewater with olive leaves: organic matter degradation and biological activity. Biores Technol 86:59–64

    Article  CAS  Google Scholar 

  • Gharsallah N (1993) Production of single cell protein from olive mill wastewaters by yeasts. Environ Technol 14:393–395

    Google Scholar 

  • Giannoutsou EP, Meintanis C, Karagouni AD (2004) Identification of yeast strains isolated from a two-phase decanter system olive oil waste and investigation of their ability for its fermentation. Biores Technol 93:301–306

    Article  CAS  Google Scholar 

  • Goula AM, Karapantsios TD, Achilias DS, Adamopoulos KG (2008) Water sorption isotherms and glass transition temperature of spray dried tomato pulp. J Food Eng 85:73–83

    Article  Google Scholar 

  • Gray NF (2005) Water technology: an introduction for environmental scientists and engineers, 2nd edn. Elsevier, Burlington, pp 200–300

  • Hachicha S, Chtourou M, Medhioub K, Ammar E (2006) Compost of poultry manure and olive mill wastes as an alternative fertilizer. Agron Sustain Dev 26:135–142

    Article  Google Scholar 

  • Hachicha S, Sellami F, Cegarra J, Hachicha R, Drira N, Medhioub K, Ammar E (2008) Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure—Physico-chemical characterization of the processed organic matter. J Hazard Mater 162:402–409

    Article  PubMed  CAS  Google Scholar 

  • Hachicha S, Cegarra J, Sellami F, Hachicha R, Drira N, Medhioub K, Ammar E (2009) Elimination of polyphenols toxicity from olive mill wastewaters–by its co-composting with sesame bark. J Hazard Mater 161:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Hadrich B, Boudhrioua N, Kechaou N (2008) Experimental and mathematical study of desorption isotherms of Tunisian Sardine (Sardinella aurita). Food Bioprod Process 86:242–247

    Article  Google Scholar 

  • Heldman DR, Lund DB (2007) Handbook of food engineering, 2nd edn. CRC Press, New York, pp 366–375

    Google Scholar 

  • Institut National de Météorologie INM (2004) Tableau climatologique mensuel de la station de Thyna. Ministère des Travaux Publics et de l'Habitat, Tunis

    Google Scholar 

  • International Standardization Organization, ISO 7218 (1985) Règles générales pour les examens microbiologiques. Afnor, Paris, p 45

    Google Scholar 

  • Japan International Cooperation Agency JICA (1993) The study on waste treatment recycling plan of selected industries in the region of Sfax in the Republic of Tunisia. JICA, Tokyo, pp 4–41

    Google Scholar 

  • Japanese Standards Association (1995) JIS handbook. In wastewater treatment. Japanese Standards Association, Tokyo

  • Jarboui R, Sellami F, Kharroubi A, Gharsallah N, Ammar E (2008) Olive mill wastewater stabilization in open-air ponds: impact on clay–sandy soil. Biores Technol 99:7699–7708

    Article  CAS  Google Scholar 

  • Jayendra Kumar A, Singh RRB, Patil AA, Patel AA (2005) Effect of temperature on moisture desorption isotherms of keer. LWT 38:303–310

    Article  CAS  Google Scholar 

  • Knechtel RJ (1987) A more economical method for the determination of chemical oxygen demand. Water Pollut Control pp 25–29

  • Laconi S, Molle G, Cabiddu A, Pompei R (2007) Bioremediation of olive oil mill wastewater and production of microbial biomass. Biodegradation 18:559–599

    Article  PubMed  CAS  Google Scholar 

  • Leslie Grady CP, Daigger GT, Lim HC (1999) Biological wastewater treatment, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Madrid L, Diaz-Barrientos E, Bejarno M (2000) Relationships between heavy metal mobility in soils and sediments and the presence of organic waste. In: DL Wise et al. (eds) Remediation engineering of contaminated soils. Marcel Dekker, New York, pp 639–643

  • Mara D, Horan NJ (2003) Handbook of water and wastewater microbiology. Academic Press, New York, pp 373–400

    Google Scholar 

  • McKinney RE (2004) Environmental pollution control microbiology. Marcel Dekker, New York, pp 320–350

    Google Scholar 

  • Mc Namara CJ, Anastasiou CC, O’Flaherty V, Mitchell R (2008) Bioremediation of olive mill wastewater. Int Biodeter Biodegr 61:127–134

    CAS  Google Scholar 

  • Mechri B, Ben Mariem F, Baham M, Ben Elhaj S, Hammami M (2008) Change in soil properties and soil microbial community following land spreading of olive mill wastewater affects olive trees key physiological parameters and abundance of arbuscular mycorrhizal fungi. Soil Biol Biochem 40:152–161

    Article  CAS  Google Scholar 

  • Motarjemi Y (1988) A study of some physical properties of water in food stuffs-Diffusivity in minced meat products. Doctoral Dissertation, Lund University

  • Mouncif M, Achckari-Bgdouri A, Tamoh S, Faid M, Lhadi K (1995) Valorisation and treatment of olive mill waste waters by selected yeasts strains. Grasas Y aceites 44:335–338

    Google Scholar 

  • Niaounakis DM, Halvadakis CP (2006) Olive processing waste management: literature review and patent survey, 2nd edn. Elsevier, p 44

  • Paixao SM, Mendonça E, Picado A, Anselmo AM (1999) Acute toxicity evaluation of olive mill wastewaters: a comparative study of three aquatic organisms. Environ Toxicol 14:263–269

    Article  CAS  Google Scholar 

  • Paredes C, Cegarra J, Roig A, Sanchez-Monedero MA, Bernal MP (1999) Characterization of olive mill wastewater (alpechin) and its sludge for agricultural purposes. Biores Technol 67:111–115

    Article  CAS  Google Scholar 

  • Plaza C, Senesi N, Brunetti G, Mondelli D (2007) Evolution of the fulvic acid fractions during co-composting of olive oil mill wastewater sludge and tree cuttings. Biores Technol 98:1964–1971

    Article  CAS  Google Scholar 

  • Quaratino D, D’Annibale A, Federici F, Cereti CF, Rossini F, Fenice M (2007) Enzyme and fungal treatments and a combination thereof reduce olive mill wastewater phytotoxicity on Zea mays L. seeds. Chemosphere 66:1627–1633

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Cormenzana A, Juarez-Jimenez B, Garcia-Pareja MP (1996) Antimicrobial activity of olive mill waste-waters (alpechin) and biotransformed olive oil mill wastewater. Int Biodeter Biodegr 38:283–290

    Article  Google Scholar 

  • Rana G, Rinaldi M, Introna M (2003) Volatilisation of substances after spreading olive oil wastewater on the soil in Mediterranean environment. Agr Ecosyst Environ 96:49–58

    Google Scholar 

  • Robles A, Lucas R, Ciefuegos GA, Gálvez A (2000) Biomass production and detoxification of wastewaters from the olive oil industry by strains of penicillium isolated from wastewater disposal ponds. Biores Technol 74:217–221

    Article  CAS  Google Scholar 

  • Saez L, Perez J, Martinez J (1992) Low molecular weight phenolics attenuation during simulated treatment of wastewaters from olive oil mills in evaporation ponds. Water Res 26:1261–1266

    Article  CAS  Google Scholar 

  • Santi CA, Cortes S, D’Acqui PL, Sparvoli E, Pushparj B (2008) Reduction of organic pollutants in olive mill wastewater by using different mineral substrates as adsorbents. Biores Technol 99:1945–1951

    Article  CAS  Google Scholar 

  • Sellami F, Hachicha S, Chtourou M, Medhioub K, Ammar E (2007) Bioconversion of wastes from the olive oil and confectionery industries: spectroscopic study of humic acids. Environ Technol 28:1285–1298

    Article  PubMed  CAS  Google Scholar 

  • Sellami F, Jarboui R, Hachicha S, Medhioub K, Ammar E (2008) Co-composting of oil exhausted olive-cake, poultry manure and industrial residues of agro-food activity for soil amendment. Biores Technol 99:1177–1188

    Article  CAS  Google Scholar 

  • Shapton DA, Shapton NF (1998) Principles and practices for the safe processing of foods. Woodhead publishing, Cambridge, pp 306–441

    Google Scholar 

  • Sierra J, Martí E, Montserrat G, Cruañas R, Garau MA (2001) Characterisation and evolution of a soil affected by olive oil mill wastewater disposal. Sci Total Environ 279:207–214

    Article  Google Scholar 

  • Sinija VR, Mishra HN (2008) Moisture sorption isotherms and heat of sorption of instant (soluble) green tea powder and green tea granules. J Food Eng 86:494–500

    Article  Google Scholar 

  • Tadesse I, Green FB, Puhakka JA (2004) Seasonal and diurnal variations of temperature, pH and dissolved oxygen in advanced integrated wastewater pond system treating tannery effluent. Water Res 38:645–654

    Article  PubMed  CAS  Google Scholar 

  • Tardioli S, Bànnè E, Santori TG (1997) Species-specific selection on soil fungal population after olive mill wastewater treatment. Chemosphere 34:2329–2336

    Article  PubMed  Google Scholar 

  • Torrecilla JS, Mena ML, Yanez-Sedeno P, Garcia J (2007) Application of artificial network to determination of phenolic compounds in olive oil mill wastewater. J Food Eng 81:544–555

    Article  CAS  Google Scholar 

  • Tsioulpas A, Dimou D, Iconomou D, Aggelis G (2002) Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Biores Technol 84:251–257

    Article  CAS  Google Scholar 

  • Verenich S, Roosalu K, Hautaniemi M, Laari A, Kallas J (2005) Kinetic modelling of the promoted and unpromoted wet oxidation of debarking evaporation concentrates. Chem Eng J 108:101–108

    Article  CAS  Google Scholar 

  • Vitolo S, Petarca L, Bresci B (1999) Treatment of olive oil industry wastes. Biores Technol 67:129–137

    Article  CAS  Google Scholar 

  • Williams PT (1998) Waste treatment and disposal. John Wiley and Sons, Baffinslane

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Ahmed Ayadi the General Manager of the Tunisian Services Society, for providing the material and allowing exploration of the site. The authors are grateful to Mrs Mounira Ben Mrad from the National Engineering School in Sfax for her help with English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emna Ammar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarboui, R., Hadrich, B., Gharsallah, N. et al. Olive mill wastewater disposal in evaporation ponds in Sfax (Tunisia): moisture content effect on microbiological and physical chemical parameters. Biodegradation 20, 845–858 (2009). https://doi.org/10.1007/s10532-009-9272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9272-0

Keywords

Navigation