Skip to main content
Log in

Optimisation for enhanced decolourization and degradation of Reactive Red BS C.I. 111 by Pseudomonas aeruginosa NGKCTS

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Soil samples collected from dye contaminated sites of Vatva, Gujarat, India were studied for the screening and isolation of organisms capable of decolourizing textile dyes. The most efficient isolate, which showed decolourization zone of 48 mm on 300 ppm Reactive Red BS (C.I.111) containing plate, was identified as Pseudomonas aeruginosa. Reactive Red BS (C.I.111) was used as a model dye for the study. The isolated culture exhibited 91% decolourization of 300 ppm dye within 5.5 h over a wide pH range from 5.0 to 10.5 and temperature ranging from 30 to 40°C. The culture was able to decolourize more than 91% of Reactive Red BS under static conditions in presence of either glucose, peptone or yeast extract. Addition of 300 ppm of Reactive Red BS, in each step, in ongoing dye decolourization flask, gave more than 90% decolourization within 2 h corresponding to 136 mg l−1 h−1 dye removal rate. The isolate had the ability to decolourize six different reactive dyes tested as well as the actual dye manufacturing industry’s effluent. The degradation of the dye was confirmed by HPTLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bhatt N, Patel KC, Keharia H, Madamwar D (2005) Decolorization of diazo-dye Reactive Blue 172 by Pseudomonas aeruginosa NBAR12. J Basic Microbiol 45(6):407–418

    Article  PubMed  CAS  Google Scholar 

  • Biolog (2001) Instructions for use of the Biolog GP2 and GN2 Microplates™. Biolog INC, Hayward

    Google Scholar 

  • Chakraborty S, Purkait MK, DasGupta S, De S, Basu JK (2003) Nanofiltration of textile plant effluent for colour removal and reduction in COD. Sep Purif Technol 31(2):141–151

    Article  CAS  Google Scholar 

  • Chang JS, Lin YC (2000) Fed-batch bioreactor strategies for microbial decolourization of azo dye using a Pseudomonas luteola strain. Biotechnol Progress 16:979–985

    Article  CAS  Google Scholar 

  • Chen BY (2002) Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochem 38(3):437–446

    Article  CAS  Google Scholar 

  • Chen KC, Huang WT, Wu JY, Houng JY (1999) Microbial decolorization of azo dyes by Proteus mirabilis. J Ind Microbiol Biotechnol 23(1):686–690

    Article  PubMed  CAS  Google Scholar 

  • Chen KC, Wu JY, Liou DJ, Hwang SCJ (2003) Decolorization of the textile dyes by newly isolated bacterial strains. J Biotechnol 101(1):57–68

    Article  PubMed  CAS  Google Scholar 

  • Clarke GM (1994) Statistics and experimental design—an introduction for biologists and biochemists, 3rd edn. Edward Arnold, London, pp 164–174

    Google Scholar 

  • Dave SR, Dave RH (2009) Isolation and characterization of Bacillus thuringiensis for Acid red 119 dye decolourization. Biresour Technol 100:249–253

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Georgiou D, Aivazidis A, Hatiras J, Gimouhopoulos K (2003) Treatment of cotton textile wastewater using lime and ferrous sulfate. Water Res 37(9):2248–2250

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb A, Shaw C, Smith A, Wheatley A, Forsythe S (2003) The toxicity of textile reactive azo dyes after hydrolysis and decolourization. J Biotechnol 101(1):49–56

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Zhou J, Wang D, Yang J, Li Z (2008) The new incorporation bio-treatment technology of bromoamine acid and azo dyes wastewaters under high-salt conditions. Biodegradation 19(1):93–98

    Article  PubMed  CAS  Google Scholar 

  • Hu TL (1994) Decolourization of reactive azo dyes by transformation with Pseudomonas luteola. Bioresour Technol 49(1):47–51

    Article  CAS  Google Scholar 

  • Hu TL (2001) Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola. Water Sci Technol 43(2):261–269

    PubMed  CAS  Google Scholar 

  • Khehra M, Saini H, Sharma D, Chadha B, Chimni S (2005) Decolorization of various azo dyes by bacterial consortium. Dyes Pigments 67(1):55–61

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kirk RE, Othmer DF (1993) Dyes, environmental chemistry. In: Howe-Grant M (ed) Kirk-Othmer encyclopaedia of chemical technology, vol 8, 4th edn. Wiley Interscience Publication, New York, pp 753–773

    Google Scholar 

  • Kumar V, Wati L, FitzGibbon F, Nigam P, Banat IM, Singh D, Marchant R (1997) Bioremediation and decolorization of anaerobically digested distillery spent wash. Biotechnol Lett 19(4):311–314

    Article  CAS  Google Scholar 

  • Mali PL, Mahajan MM, Patil DP, Kulkarni MV (2000) Biodecolourisation of members of triphenylmethane and azo group of dyes. J Sci Ind Res 59:221–224

    CAS  Google Scholar 

  • McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87

    Article  PubMed  CAS  Google Scholar 

  • Mielgo I, Moreira MT, Feijoo G, Lema JM (2002) Biodegradation of a polymeric dye in a pulsed bed bioreactor by immobilised Phanerochaete chrysosporium. Water Res 36(7):1896–1901

    Article  PubMed  CAS  Google Scholar 

  • Moosvi S, Keharia H, Madamwar D (2005) Decolourization of textile dye reactive violet 5 by a newly isolated bacterial consortium RVM 11.1. World J Microbiol Biotechnol 21:667–672

    Article  CAS  Google Scholar 

  • Papić S, Koprivanac N, Lončarić Božić A (2000) Removal of reactive dyes from wastewater using Fe(III) coagulant. Color Technol 116(11):352–358

    Article  Google Scholar 

  • Pavan FA, Mazzocato AC, Gushikem Y (2008) Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent. Bioresour Technol 99(8):3162–3165

    Article  PubMed  CAS  Google Scholar 

  • Ramsay JA, Nguyen T (2002) Decoloration of textile dyes by Trametes versicolor and its effect on dye toxicity. Biotechnol Lett 24(21):1757–1761

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sandhya S, Padmavathy S, Swaminathan K, Subrahmanyam YV, Kaul SN (2005) Microaerophilic-aerobic sequential batch reactor for treatment of azo dyes containing simulated wastewater. Process Biochem 40(2):885–890

    Article  CAS  Google Scholar 

  • Sandhya S, Sarayu K, Uma B, Swaminathan K (2008) Decolorizing kinetics of a recombinant Escherichia coli SS125 strain harbouring azoreductase gene from Bacillus latrosporus RRK1. Bioresour Technol 99(7):2187–2191

    Article  PubMed  CAS  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56(1–2):69–80

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Ganesh Dye Chem. dye manufacturing industry, Ahmedabad for providing the dye samples, industrial effluent and waste.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Dave.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheth, N.T., Dave, S.R. Optimisation for enhanced decolourization and degradation of Reactive Red BS C.I. 111 by Pseudomonas aeruginosa NGKCTS. Biodegradation 20, 827–836 (2009). https://doi.org/10.1007/s10532-009-9270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9270-2

Keywords

Navigation