Skip to main content
Log in

Biological sulphate reduction using food industry wastes as carbon sources

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Biological treatment with dissimilatory sulphate-reducing bacteria has been considered the most promising alternative for decontamination of sulphate rich effluents. These wastewaters are usually deficient in electron donors and require their external addition to achieve complete sulphate reduction. The aim of the present study was to investigate the possibility of using food industry wastes (a waste from the wine industry and cheese whey) as carbon sources for dissimilatory sulphate-reducing bacteria. The results show that these wastes can be efficiently used by these bacteria provided that calcite tailing is present as a neutralizing and buffer material. A 95 and 50 % sulphate reduction was achieved within 20 days of experiment by a consortium of dissimilatory sulphate-reducing bacteria grown on media containing waste from the wine industry or cheese whey respectively. Identification of the dissimilatory sulphate-reducing bacteria community using the dsr gene revealed the presence of the species Desulfovibrio fructosovorans, Desulfovibrio aminophilus and Desulfovibrio desulfuricans. The findings of the present study emphasise the potential of using wastes from the wine industry as carbon source for dissimilatory sulphate-reducing bacteria, combined with calcite tailing, in the development of cost effective and environmentally friendly bioremediation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Annachhatre AP, Suktrakoolvait S (2001) Biological sulfate reducing using molasses as a carbon source. Water Environ Res 73:118–126. doi:10.2175/106143001X138778

    Article  PubMed  CAS  Google Scholar 

  • Baena S, Fardeau ML, Labat M, Olliver B, Garcia JL, Patel BKC (1998) Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulfate reducing bacterium from an anaerobic dairy lagoon. Syst Appl Microbiol 21:498–504

    PubMed  CAS  Google Scholar 

  • Bahr M, Crump BC, Klepac-Ceraj V, Teske A, Sogin ML, Hobbie JE (2005) Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ Microbiol 7:1175–1195. doi:10.1111/j.1462-2920.2005.00796.x

    Article  PubMed  CAS  Google Scholar 

  • Baker BJ, Mose DP, Macgregor BJ, Fishbain S, Wagner M, Fry NK, Jackson B, Speolstra N, Loos S, Takai K, Lollar BS, Fredrickson J, Balkwill D, Onstott TC, Wimpee CF, Stahl DA (2003) Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. Environ Microbiol 5:267–2677. doi:10.1046/j.1462-2920.2003.00408.x

    Article  PubMed  Google Scholar 

  • Barnes LJ (1998) Removal of heavy metals and sulphate from contaminated grounwater using sulphate-reducing bacteria: development of a commercial process. In: Sikdar SK, Irvine RL (eds) Bioremediation technologies, vol 3. Publishing Company Inc., Lancaster, USA, pp 577–619

    Google Scholar 

  • Benedetto JS, De Almeida SK, Gomes HA, Vazoller RF, Ladeira ACQ (2005) Monitoring of sulfate-reducing bacteria in acid water from uranium mines. Min Eng 18:1341–1343. doi:10.1016/j.mineng.2005.08.012

    Article  CAS  Google Scholar 

  • Burgess JE, Stuetz RM (2002) Activated sludge for the treatment of sulphur-rich wastewaterss. Min Eng 14:839–846. doi:10.1016/S0892-6875(02)00049-3

    Article  Google Scholar 

  • Castro H, Reddy KR, Ogram A (2002) Composition and function of sulphate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Appl Environ Microbiol 68:6129–6137. doi:10.1128/AEM.68.12.6129-6137.2002

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Peacock AD, Long P, Stephen JR, McKinley JP, Macnaughton SJ, Hussain AKM, Saxton AM, White DC (2001) Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl Environ Microbiol 67:3149–3160. doi:10.1128/AEM.67.7.3149-3160.2001

    Article  PubMed  CAS  Google Scholar 

  • Christensen B, Laake M, Lien T (1996) Treatment of acid mine water by sulphate-reducing bacteria; results from a bench scale experiment. Water Res 30:167–177

    Google Scholar 

  • Coetser S, Pulles W, Heath R, Cloete T (2006) Chemical characterisation of organic electron donors for sulfate reduction for potential use in acid mine drainage treatment. Biodegradation 17:67–77. doi:10.1007/s10532-005-7567-3

    Article  CAS  Google Scholar 

  • Cohen RH (2006) Use of microbes for cost reduction of metal removal from metals and mining industry waste streams. J Clean Prod 14:1146–1157. doi:10.1016/j.jclepro.2004.10.009

    Article  Google Scholar 

  • Costa MC, Duarte JC (2005) Bioremediation of acid mine drainage using acidic soil and organic wastes for promoting sulphate-reducing bacteria activity on a column reactor. Water Air Soil Pollut 165:325–345. doi:10.1007/s11270-005-6914-7

    Article  CAS  Google Scholar 

  • Dar SA, Kuenen JG, Muyzer G (2005) Nested PCR-denaturing gradient gel electrophoresis approach to determine the diversity of sulfate-reducing bacteria in complex microbial communities. Appl Environ Microbiol 71:2325–2330. doi:10.1128/AEM.71.5.2325-2330.2005

    Article  PubMed  CAS  Google Scholar 

  • Dar SA, Alfons JM, Stams J, Kuenen G, Muyzer G (2007) Co-existence of physiologically similar sulfate-reducing bacteria in a full-scale sulfidogenic bioreactor fed with a single organic electron donor. Appl Microbiol Biotechnol 75:1463–1472. doi:10.1007/s00253-007-0968-y

    Article  PubMed  CAS  Google Scholar 

  • Dvorak DH, Hedin RS, Edenborn HM, Mclntire PE (1992) Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot-scale reactors. Biotechnol Bioeng 40:609–616. doi:10.1002/bit.260400508

    Article  PubMed  CAS  Google Scholar 

  • El Bayoumy MA, Bewtra JK, Ali HI, Biswas N (1999) Sulfide production by sulfate reducing bacteria with lactate as feed in an upflow anaerobic fixed film reactor. Water Air Soil Pollut 112:67–84. doi:10.1023/A:1005016406707

    Article  CAS  Google Scholar 

  • Fedorovich V, Greben M, Kalyuzhnyi S, Lens P, Pol LH (2000) Use of hydrophobic membranes to supply hydrogen to sulphate reducing bioreactors. Biodegradation 11:295–303. doi:10.1023/A:1011100120121

    Article  PubMed  CAS  Google Scholar 

  • Garcia C, Moreno DA, Ballester A, Bláquez ML, González F (2001) Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria. Min Eng 14:997–1008. doi:10.1016/S0892-6875(01)00107-8

    Article  CAS  Google Scholar 

  • Hammack TW, Edenborn HM, Dvorak DH (1994) Treatment of water from an open-pit copper mine using biogenic sulfide and lime stone: a feasibility study. Water Res 28:2321–2329. doi:10.1016/0043-1354(94)90047-7

    Article  CAS  Google Scholar 

  • Hernandez-Eugenio G, Fardeau ML, Patel BKC, Macarie H, Garcia JL, Ollivier B (2000) Desulfovibriomexicanus sp. nov. a sulfate-reducing bacterium isolated from an upfow anaerobic sludge blanket (UASB) reactor treating cheese wastewaters. Anaerobe 6:305–312. doi:10.1006/anae.2000.0354

    Article  CAS  Google Scholar 

  • Huisman JL, Schouten G, Dijkman H (2006) Biotechnological solutions for the treatment of pickle liquors. In: Dutrizac J, Riveros PA (eds) Iron control tecnologies. Metallurgical Society, Montreal, pp 805–814

    Google Scholar 

  • Johnson DB, Hallberg KB (2005) Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Sci Total Environ 338:81–93. doi:10.1016/j.scitotenv.2004.09.008

    Article  PubMed  CAS  Google Scholar 

  • Lens PNL, Gastesi R, Lettinga G (2003) Use of sulfate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases. Biodegradation 14:229–240. doi:10.1023/A:1024222020924

    Article  PubMed  CAS  Google Scholar 

  • Lima ACF, Gonçalves MM, Granato M, Leite GF (2001) Anaerobic sulphate-reducing microbial process using UASB reactor for heavy metals decontamination. Environ Technol 22:261–270. doi:10.1080/09593332208618286

    Article  PubMed  Google Scholar 

  • Liu X, Bagwell CE, Wu L, Devol AH, Zhou J (2003) Molecular diversity of sulphate-reducing bacteria from different continental margin habitats. Appl Environ Microbiol 69:6073–6081. doi:10.1128/AEM.69.10.6073-6081.2003

    Article  PubMed  CAS  Google Scholar 

  • Maree JP, Gerber A, Strydom WF (1986) A biological process for sulphate removal from industrial effluents. Water SA 12:139–144

    CAS  Google Scholar 

  • Nagpal S, Chuichulcherm S, Livingstone A, Peeva L (2000) Ethanol utilization by sulfate-reducing bacteria: an experimental and modeling study. Biotechnol Bioeng 16:533–543. doi:10.1002/1097-0290(20001205)70:5<533::AID-BIT8>3.0.CO;2-C

    Article  Google Scholar 

  • Neculita CM, Zagury GJ, Bussière B (2007) Passive treatment of acid mine drainage in bioreactors using sulphate-reducing bacteria. J Environ Qual 36:1–16. doi:10.2134/jeq2006.0066

    Article  PubMed  CAS  Google Scholar 

  • Ollivier B, Cord-Ruwisch R, Hatchikian EC, Garcia JL (1988) Characterization of Desulfovibrio fructosovorans sp. nov. Arch Microbiol 149:447–450. doi:10.1007/BF00425586

    Article  CAS  Google Scholar 

  • Pfennig N, Widdel F, Truper H (1981) The dissimilatory sulfate-reducing bacteria. In: Mortimer PS, Heinz S, Truper HG, Balows A, Schelegel GH (eds) The prokaryotes: a handbook on habitats, isolation and identification of bacteria. Springer, Berlin, p 926

    Google Scholar 

  • Postgate JR (ed) (1984) The sulphate-reducing bacteria. Cambridge University Press, New York

    Google Scholar 

  • Saitou N, Neil M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–525

    PubMed  CAS  Google Scholar 

  • Santegoeds CM, Ferdelman TG, Muyzer G, Beer D (1998) Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Appl Environ Microbiol 64:3731–3739

    PubMed  CAS  Google Scholar 

  • Steed VS, Suidan MT, Gupta M, Miyahara T, Acheson CM, Sayles GD (2000) Development of a sulfate-reducing biological process to remove heavy metals from acid mine drainage. Water Environ Res 72:530–535. doi:10.2175/106143000X138102

    Article  CAS  Google Scholar 

  • Studier JA, Keppler KJ (1988) A note on the neighbor-joining algorithm of saitou and neil. Mol Biol Evol 5(6):729–731

    PubMed  CAS  Google Scholar 

  • Susuki Y, Kelly SD, Kemmer KM, Banfield JF (2003) Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment. Appl Environ Microbiol 69:1337–1346. doi:10.1128/AEM.69.3.1337-1346.2003

    Article  Google Scholar 

  • Tabak HH, Govind R (2003) Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction. Biodegradation 14:437–452. doi:10.1023/A:1027332918844

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto TK, Killion HA, Miller GC (2004) Column experiments for microbiological treatment of acid mine drainage: low-temperature, low pH and matrix investigations. Water Res 38:1405–1418. doi:10.1016/j.watres.2003.12.012

    Article  PubMed  CAS  Google Scholar 

  • Vega-López A, Amora-Lazcano E, López-López E, Terrón O, Proal-Nágera JB (2007) Toxic effects of zinc on anaerobic microbiota from Zimapán Reservoir (Mexico). Anaerobe 13:65–73. doi:10.1016/j.anaerobe.2007.01.001

    Article  PubMed  Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    PubMed  CAS  Google Scholar 

  • Waybrant KR, Blowes DW, Ptacek CJ (1998) Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage. Environ Sci Technol 32:1972–1979. doi:10.1021/es9703335

    Article  CAS  Google Scholar 

  • White D (1995) The physiology and biochemistry of prokaryotes. Oxford University Press, USA

    Google Scholar 

  • White C, Dennis JS, Gadd GM (2003) A mathematical process model for cadmium precipitation by sulfate-reducing bacterial biofilms. Biodegradation 14:139–151. doi:10.1023/A:1024026319479

    Article  PubMed  CAS  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 3352–3378

    Google Scholar 

  • Zagury GJ, Kulnieks VI, Neculite CM (2006) Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment. Chemosphere 69:944–954. doi:10.1016/j.chemosphere.2006.01.001

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Fundação para a Ciência e a Tecnologia (FCT) through Project ECOTEC (POCI/AMB/58512/2004). The authors would like to thank Centro de Desenvolvimento de Ciências e Tecnologias de Produção Vegetal (CDCTPV), from the Universidade do Algarve, for the utilization of HPLC and to Câmara Municipal de Faro for the authorization to collect sludge samples. We are grateful to Rogério Tenreiro and Sandra Chaves from Universidade de Lisboa, Faculdade de Ciências for providing the Desulfovibrio sp. DNA used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Clara Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, M., Faleiro, M.L., Barros, R.J. et al. Biological sulphate reduction using food industry wastes as carbon sources. Biodegradation 20, 559–567 (2009). https://doi.org/10.1007/s10532-008-9245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9245-8

Keywords

Navigation