Skip to main content
Log in

Identification and characterization of chlorpyrifos-methyl and 3,5,6-trichloro-2-pyridinol degrading Burkholderia sp. strain KR100

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A chlorpyrifos-methyl (CM) degrading bacterium (designated strain KR100) was isolated from a Korean rice paddy soil and was further tested for its sensitivity against eight commercial antibiotics. Based on morphological, biochemical, and molecular characteristics, this bacterium showed greatest similarity to members of the order Burkholderiales and was shown to be most closely related to members of the Burkholderia cepacia group. Strain KR100 hydrolyzed CM to 3,5,6-trichloro-2-pyridinol (TCP) and utilized TCP as the sole source of carbon for its growth. The isolate was also able to degrade chlorpyrifos, dimethoate, fenitrothion, malathion, and monocrotophos at 300 μg/ml but diazinon, dicrotophos, parathion, and parathion-methyl at 100 μg/ml. The ability to degrade CM was found to be encoded on a single plasmid of ~50 kb, pKR1. Genes encoding resistance to amphotericin B, polymixin B sulfate, and tetracycline were also located on the plasmid. This bacterium merits further study as a potential biological agent for the remediation of soil, water, or crop contaminated with organophosphorus compounds because of its greater biodegradation activity and its broad specificity against a range of organophosphorus insecticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CM:

Chlorpyrifos-methyl

TCP:

3,5,6-Trichloro-2-pyridinol

OP:

Organophosphorus insecticide

MSM:

Mineral salts basal medium

PTYG:

Peptone–tryptone–yeast extract–glucose

References

  • Astrid EM, Houwing J, Dolfing J, Janssen DB (1996) Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture. Appl Environ Microbiol 62:886–891

    Google Scholar 

  • Chapalamadugu S, Chaudhry GR (1992) Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Crit Rev Biotechnol 12:357–389. doi:10.3109/07388559209114232

    Article  PubMed  CAS  Google Scholar 

  • Chapman RA, Harris CR (1990) Factors influencing the development and effects of enhanced microbial activity. In: Racke KD, Coats JR (eds) Enhanced biodegradation of pesticides in the environment. American Chemical Society, Washington, DC, pp 82–96

    Google Scholar 

  • Chauhan A, Chakraborti AK, Jain RK (2000) Plasmid encoded degradation of p-nitrophenol and 4-nitrocatechol by Arthrobacter protophormiae. Biochem Biophys Res Commun 270:733–740. doi:10.1006/bbrc.2000.2500

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Racke KD, Bollag JM (1997) Isolation and characterization of a chlorinated-pyridinol-degrading bacterium. Appl Environ Microbiol 63:4096–4098

    PubMed  CAS  Google Scholar 

  • George MG, Julia AB, Timothy L (2005) Betaproteobacteria. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 575–600

    Google Scholar 

  • Hashimoto M, Fukui M, Hayano K, Hayatsu M (2002) Nucleotide sequence and genetic structure of a novel carbaryl hydrolase gene (cehA) from Rhizobium sp. strain AC100. Appl Environ Microbiol 68:1220–1227. doi:10.1128/AEM.68.3.1220-1227.2002

    Article  PubMed  CAS  Google Scholar 

  • Hayatsu M, Hirano M, Tokuda S (2000) Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100. Appl Environ Microbiol 66:1737–1740. doi:10.1128/AEM.66.4.1737-1740.2000

    Article  PubMed  CAS  Google Scholar 

  • Higson FK, Focht DD (1992) Degradation of 3-methylbenzoic acid by Pseudomonas cepacia MB2. Appl Environ Microbiol 58:194–200

    PubMed  CAS  Google Scholar 

  • IPCS (2008) Data sheets on pesticides no. 33. Chlorpyrifos-methyl. In: The International Programme on Chemical Safety, Ottawa, ON. http://www.inchem.org/documents/pds/pds/pest33_24e.htm

  • Jia K, Cui Z, He J, Guo P, Li S (2006) Isolation and characterization of a denitrifying monocrotophos-degrading Paracoccus sp. M1. FEMS Microbiol Lett 263:155–162. doi:10.1111/j.1574-6968.2006.00389.x

    Article  PubMed  CAS  Google Scholar 

  • KCPA (2005) Agrochemical year book. Korea Crop Protection Association, Seoul

    Google Scholar 

  • Khan SU (1982) Bound pesticide residues in soil and plants. Residue Rev 84:1–25

    PubMed  CAS  Google Scholar 

  • Khan MKR, Malik A (2001) Antibiotic resistance and detection of β-lactamase in bacterial strains of Staphylococci and Escherichia coli isolated from foodstuffs. World J Microbiol Biotechnol 17:863–868. doi:10.1023/A:1013857101177

    Article  CAS  Google Scholar 

  • Kilbane JJ, Chatterjee DK, Chakrabarty AM (1983) Detoxification of 2,4,5-trichlorophenoxyacetic acid from contaminated soil by Pseudomonas cepacia. Appl Environ Microbiol 45:1697–1700

    PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Laveglia J, Dahm PA (1977) Degradation of organophosphorus and carbamate insecticides in the soil and by soil microorganisms. Annu Rev Entomol 22:483–513. doi:10.1146/annurev.en.22.010177.002411

    Article  PubMed  CAS  Google Scholar 

  • Liu B, McConnell LL, Torrents A (2001) Hydrolysis of chlorpyrifos in natural waters of the Chesapeake Bay. Chemosphere 44:1315–1323. doi:10.1016/S0045-6535(00)00506-3

    Article  PubMed  CAS  Google Scholar 

  • Mallick BK, Banerji A, Shakil NA, Sethunathan NN (1999) Bacterial degradation of chlorpyrifos in pure culture and in soil. Bull Environ Contam Toxicol 62:48–55. doi:10.1007/s001289900840

    Article  PubMed  CAS  Google Scholar 

  • Manclús JJ, Montoya A (1995) Development of immunoassays for the analysis of chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol in the aquatic environment. Anal Chim Acta 311:341–348. doi:10.1016/0003-2670(95)00044-Z

    Article  Google Scholar 

  • Meikle RW, Youngson CR (1978) The hydrolysis rate of chlorpyrifos, O, O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate, and its dimethyl analog, chlorpyrifos-methyl, in dilute aqueous solution. Arch Environ Contam Toxicol 7:13–22. doi:10.1007/BF02332034

    Article  PubMed  CAS  Google Scholar 

  • Mulbry WW, Karns JS, Kearney PC, Nelson JO, McDaniel CS, Wild JR (1986) Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by Southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 51:926–930

    PubMed  CAS  Google Scholar 

  • Munnecke DM (1976) Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Appl Environ Microbiol 32:7–15

    PubMed  CAS  Google Scholar 

  • Nawab AN, Aleem A, Malik A (2003) Determination of organochlorine pesticides in agricultural soil with special reference to γ-HCH degradation by Pseudomonas strains. Bioresour Technol 88:41–46. doi:10.1016/S0960-8524(02)00263-8

    Article  PubMed  CAS  Google Scholar 

  • Poh RP, Smith ARW, Bruce IJ (2002) Complete characterisation of Tn5530 from Burkholderia cepacia strain 2a (pIJB1) and studies of 2,4-dichlorophenoxyacetate uptake by the organism. Plasmid 48:1–12. doi:10.1016/S0147-619X(02)00018-5

    Article  PubMed  CAS  Google Scholar 

  • Racke KD (1993) Environmental fate of chlorpyrifos. Rev Environ Contam Toxicol 131:1–154

    PubMed  CAS  Google Scholar 

  • Racke KD, Coats RJ (1987) Enhanced degradation of isofenphos by soil microorganisms. J Agric Food Chem 35:94–99. doi:10.1021/jf00073a022

    Article  CAS  Google Scholar 

  • Racke KD, Robbins ST (1991) Factors affecting the degradation of 3,5,6-trichloro-2-pyridinol in soil. In: Somasundaram L, Coats JR (eds) Pesticide transformation products: fate and significance in the environment. American Chemical Society, Washington, DC, pp 92–107

    Google Scholar 

  • Racke KD, Laskowski DA, Schultz MR (1990) Resistance of chlorpyrifos to enhanced biodegradation in soil. J Agric Food Chem 38:1430–1436. doi:10.1021/jf00096a029

    Article  CAS  Google Scholar 

  • Sayler GS, Hooper SW, Layton AC, Henry King JM (1990) Catabolic plasmids of environmental and ecological significance. Microb Ecol 19:1–20. doi:10.1007/BF02015050

    Article  CAS  Google Scholar 

  • Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44:246–249

    PubMed  CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471. doi:10.1111/j.1574-6976.2006.00018.x

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Walker A, Morgan JAW, Wright DJ (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in biodegradation of contaminated soils. Appl Environ Microbiol 70:4855–4863. doi:10.1128/AEM.70.8.4855-4863.2004

    Article  PubMed  CAS  Google Scholar 

  • Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271

    PubMed  CAS  Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128. doi:10.1111/j.1574-6968.1984.tb01388.x

    Article  CAS  Google Scholar 

  • Tomlin CDS (2003) The pesticide manual, 13th edn. British Crop Protection Council, Alton

    Google Scholar 

  • Yang L, Zhao Y, Zhang B, Yang CH, Zhang X (2005) Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251:67–73. doi:10.1016/j.femsle.2005.07.031

    Article  PubMed  CAS  Google Scholar 

  • Yeon SH, Kim JR, Ahn YJ (2007) Comparison of growth-inhibiting activities of Cordyceps militaris and Paecilomyces japonica cultured on Bombyx mori pupae towards human gastrointestinal bacteria. J Sci Food Agric 87:54–59. doi:10.1002/jsfa.2669

    Article  CAS  Google Scholar 

  • Yi HR, Min KH, Kim CK, Ka JO (2000) Phylogenetic and phenotypic diversity of 4-chlorobenzoate-degrading bacteria isolated from soils. FEMS Microbiol Ecol 31:53–60. doi:10.1111/j.1574-6941.2000.tb00671.x

    Article  PubMed  CAS  Google Scholar 

  • Zayed SMAD, Farghaly M, El-Maghraby S (2003) Fate of 14C-chlorpyrifos in stored soybean and its toxicological potential to mice. Food Chem Toxicol 41:767–772. doi:10.1016/S0278-6915(03)00007-3

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from NaturoBiotech Co., Ltd and the Ministry of Education and Human Resources Development for Brain Korea 21 Project of the Korean Government to YJA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Joon Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JR., Ahn, YJ. Identification and characterization of chlorpyrifos-methyl and 3,5,6-trichloro-2-pyridinol degrading Burkholderia sp. strain KR100. Biodegradation 20, 487–497 (2009). https://doi.org/10.1007/s10532-008-9238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9238-7

Keywords

Navigation