, Volume 20, Issue 2, pp 257–270 | Cite as

Evaluation of “alperujo” composting based on organic matter degradation, humification and compost quality

  • José Antonio Alburquerque
  • José Gonzálvez
  • German Tortosa
  • Ghita Ait Baddi
  • Juan Cegarra
Original Paper


The main by-product generated by the Spanish olive oil industry, a wet solid lignocellulosic material called “alperujo” (AL), was evaluated as a composting substrate by using different aeration strategies and bulking agents. The experiments showed that composting performance was mainly influenced by the type of bulking agent added, and by the number of mechanical turnings. The bulking agents tested in this study were cotton waste, grape stalk, a fresh cow bedding and olive leaf; the latter showed the worse performance. Forced ventilation alone was revealed to work inadequately in most of the experiments. The composting process involved a substantial degradation of the organic substrate with average losses of 48.4, 28.6, 53.7 and 57.0% for total organic matter, lignin, cellulose and hemicellulose, respectively. Both organic matter biodegradation and humification were greatly influenced by the lignocellulosic nature of the starting material, which led to low organic matter and nitrogen loss rates and a progressive increase in more humified substances, as revealed by the end-values of the humification indices. The resulting composts were of good quality in terms of nutrient content, stabilised and non-phytotoxic organic matter and low heavy metal content. This demonstrates that composting technology can be used as an alternative treatment method to turn AL into compost that can be used as organic amendments or fertilisers for agricultural systems.


Composting Humification Organic fertilisers and amendments Organic matter degradation Two-phase olive-mill by-product 



The authors wish to thank Mr. P. Thomas for checking the English of the manuscript and Drs. M. P. Bernal and R. Clemente for their scientific comments and assistance in the statistical studies.


  1. Alburquerque JA, Gonzálvez J, García D, Cegarra J (2004) Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour Technol 91:195–200. doi: 10.1016/S0960-8524(03)00177-9 PubMedCrossRefGoogle Scholar
  2. Alburquerque JA, Gonzálvez J, García D, Cegarra J (2006a) Effects of bulking agent on the composting of ‘‘alperujo’’, the solid by-product of the two-phase centrifugation method for olive oil extraction. Process Biochem 41:127–132. doi: 10.1016/j.procbio.2005.06.006 CrossRefGoogle Scholar
  3. Alburquerque JA, Gonzálvez J, García D, Cegarra J (2006b) Measuring detoxification and maturity in compost made from “alperujo”, the solid by-product of extracting olive oil by the two-phase centrifugation system. Chemosphere 64(3):470–477. doi: 10.1016/j.chemosphere.2005.10.055 PubMedCrossRefGoogle Scholar
  4. Alburquerque JA, Gonzálvez J, García D, Cegarra J (2006c) Composting of a solid olive-mill by-product (“alperujo”) and the potential of the resulting compost for cultivating pepper under commercial conditions. Waste Manag 26:620–626. doi: 10.1016/j.wasman.2005.04.008 PubMedCrossRefGoogle Scholar
  5. Alburquerque JA, Gonzálvez J, García D, Cegarra J (2007) Effects of a compost made from the solid by-product (“alperujo”) of the two-phase centrifugation system for olive oil extraction and cotton gin waste on growth and nutrient content of ryegrass (Lolium perenne L.). Bioresour Technol 98(4):940–945. doi: 10.1016/j.biortech.2006.04.014 PubMedCrossRefGoogle Scholar
  6. Aragón JM, Palancar MC (eds) (2001) Improlive 2000: present and future of alperujo. Editorial Complutense, MadridGoogle Scholar
  7. Azbar N, Bayram A, Filibeli A, Muezzinoglu A, Sengul F, Ozer A (2004) A review of waste management options in olive oil production. Crit Rev Environ Sci Technol 34:209–247. doi: 10.1080/10643380490279932 CrossRefGoogle Scholar
  8. Baeta-Hall L, Céu Sàágua M, Lourdes Bartolomeu M, Anselmo AM, Fernanda Rosa M (2005) Bio-degradation of olive oil husks in composting aerated piles. Bioresour Technol 96:69–78. doi: 10.1016/j.biortech.2003.06.007 PubMedCrossRefGoogle Scholar
  9. Benito M, Masaguer A, Moliner A, Arrigo N, Martha Palma R (2003) Chemical and microbiological parameters for the characterisation of the stability and maturity of pruning waste compost. Biol Fertil Soils 37:184–189Google Scholar
  10. Borja R, Rincón B, Raposo F (2006) Anaerobic biodegradation of two-phase olive mill solid wastes and liquid effluents: kinetic studies and process performance. J Chem Technol Biot 81(9):1450–1462. doi: 10.1002/jctb.1563 CrossRefGoogle Scholar
  11. Bustamante MA, Paredes C, Marhuenda-Egea FC, Pérez-Espinosa A, Bernal MP, Moral R (2008) Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere 72:551–557. doi: 10.1016/j.chemosphere.2008.03.030 PubMedCrossRefGoogle Scholar
  12. Canet R, Pomares F, Albiach R, Tarazona F, Ibáñez MA, Ingelmo F (2000) Analyzing chemical properties of MSW composts. Biocycle 41(12):72–76Google Scholar
  13. Cayuela ML, Sánchez-Monedero MA, Roig A (2006) Evaluation of two different aeration systems for composting two-phase olive mill wastes. Process Biochem 41:616–623. doi: 10.1016/j.procbio.2005.08.007 CrossRefGoogle Scholar
  14. Cegarra J, Roig A, Navarro AF, Bernal MP, Abad M, Climent MD et al (1993) Características, compostaje y uso agrícola de residuos sólidos urbanos. In: Proceedings of “I Jornadas de Recogidas Selectivas en Origen y Reciclaje (Sección III)”, Córdoba (Spain), pp 46–55Google Scholar
  15. Cegarra J, Amor JB, Gonzálvez J, Bernal MP, Roig A (2000) Characteristics of a new solid olive-mill by-product (“alperujo”) and its suitability for composting. In: Warman PR, Taylor BR (eds) Proceedings of the International Composting Symposium (ICS′99), Halifax (Canada), pp 124–140Google Scholar
  16. Cegarra J, Alburquerque JA, Gonzálvez J, Tortosa G, Chaw D (2006) Effects of the forced ventilation on composting of a solid olive-mill by-product (“alperujo”) managed by mechanical turning. Waste Manag 26:1377–1383. doi: 10.1016/j.wasman.2005.11.021 PubMedCrossRefGoogle Scholar
  17. Charest MH, Beauchamp CJ (2002) Composting of de-inking paper sludge with poultry manure at three nitrogen levels using mechanical turning: behaviour of physico-chemical parameters. Bioresour Technol 81(1):7–17. doi: 10.1016/S0960-8524(01)00104-3 PubMedCrossRefGoogle Scholar
  18. Chen Y, Magen H, Riov J (1994) Humic substances originating from rapidly decomposing organic matter: properties and effects on plant growth. In: Senesi N, Miano TM (eds) Humic substances in the global environment and implications on human health. Elsevier, New York, pp 427–443Google Scholar
  19. Chen Y, Chefetz B, Hadar Y (1996) Formation and properties of humic substance originating from composts. In: de Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Blackie Academic and Professional, Glasgow, pp 382–393Google Scholar
  20. Ciavatta C, Vittori Antisari V, Sequi P (1988) A first approach to the characterization of the presence of humified materials in organic fertilizers. Agrochimica 32:510–517Google Scholar
  21. Eiland F, Leth M, Klamer M, Lind AM, Jensen HEK, Iversen JJL (2001) C and N turnover and lignocellulose degradation during composting of Miscanthus straw and liquid pig manure. Compost Sci Util 9(3):186–196Google Scholar
  22. Ertel JR, Behmel P, Cristman RF, Flaig WJA, Haider KM, Harvey GR et al (1988) Genesis group report. In: Frimmel FH, Christman RF (eds) Humic substances and their role in the environment. Wiley, New York, pp 105–112Google Scholar
  23. European Commission (2001) Working document: biological treatment of biowaste, 2nd draft, pp 1–22Google Scholar
  24. Faure D, Deschamps AM (1991) The effect of bacterial inoculation on the initiation of composting of grape pulps. Bioresour Technol 37:235–238. doi: 10.1016/0960-8524(91)90189-Q CrossRefGoogle Scholar
  25. Filippi C, Bedini S, Levi-Minzi R, Cardelli R, Saviozzi A (2002) Co-composting of olive mill by-products: chemical and microbiological evaluations. Compost Sci Util 10(1):63–71Google Scholar
  26. Finstein MS, Miller FC, MacGregor ST, Psarianos KM (1985) The Rutgers strategy for composting: process design and control. EPA project summary, EPA 600/S2–85/059, Cincinnati, OhioGoogle Scholar
  27. García D, Cegarra J, Abad M (1996) A comparison between alkaline and decomplexing reagents to extract humic acids from low rank coals. Fuel Process Technol 48:51–60. doi: 10.1016/0378-3820(96)01025-9 CrossRefGoogle Scholar
  28. García-Gómez A, Roig A, Bernal MP (2003) Composting of the solid fraction of olive mill wastewater with olive leaves: organic matter degradation and biological activity. Bioresour Technol 86:59–64. doi: 10.1016/S0960-8524(02)00106-2 PubMedCrossRefGoogle Scholar
  29. Haider K (1994) Advances in the basic research of the biochemistry of humic substances. In: Senesi N, Miano TM (eds) Humic substances in the global environment and implications on human health. Elsevier, New York, pp 91–107Google Scholar
  30. Hatcher PG, Spiker EC (1988) Selective degradation of plant biomolecules. In: Frimmel FH, Christman RF (eds) Humic substances and their role in the environment. Wiley, New York, pp 59–74Google Scholar
  31. Huang GF, Wu QT, Wong JWC, Nagar BB (2006) Transformation of organic matter during co-composting of pig manure with sawdust. Bioresour Technol 97:1834–1842. doi: 10.1016/j.biortech.2005.08.024 PubMedCrossRefGoogle Scholar
  32. Jeong YK, Kim JS (2001) A new method for conservation of nitrogen in aerobic composting processes. Bioresour Technol 79:129–133. doi: 10.1016/S0960-8524(01)00062-1 PubMedCrossRefGoogle Scholar
  33. Komilis DP, Ham RK (2003) The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Manag 23:419–423. doi: 10.1016/S0956-053X(03)00062-X PubMedCrossRefGoogle Scholar
  34. Liang Y, Leonard JJ, Feddes JJR, McGill WB (2000) Nitrogen dynamics in composting. In: Warman PR, Taylor BR (eds) Proceedings of the international composting symposium (ICS′99), Halifax (Canada), pp 352–370Google Scholar
  35. López MJ, Vargas-García MC, Suárez-Estrella F, Moreno J (2006) Biodelignification and humification of horticultural plant residues by fungi. Int Biodeterior Biodegrad 57:24–30. doi: 10.1016/j.ibiod.2005.10.005 CrossRefGoogle Scholar
  36. Madejón E, Díaz MJ, López R, López F, Cabrera F (2001) Co-composting of sugarbeet vinasse: influence of the organic matter nature of the bulking agents used. Bioresour Technol 76:275–278. doi: 10.1016/S0960-8524(00)00126-7 PubMedCrossRefGoogle Scholar
  37. Manios T, Maniadakis K, Kalogeraki M, Mari E, Stratakis E (2006) Efforts to explain and control the prolonged thermophilic period in two-phase olive oil mill sludge composting. Biodegradation 17:285–292. doi: 10.1007/s10532-005-7566-4 PubMedCrossRefGoogle Scholar
  38. Martins O, Dewes T (1992) Loss of nitrogenous compounds during composting of animal wastes. Bioresour Technol 42:103–111. doi: 10.1016/0960-8524(92)90068-9 CrossRefGoogle Scholar
  39. Miranda MT, Cabanillas A, Rojas S, Montero I, Ruiz A (2007) Combined combustion of various phases of olive wastes in a conventional combustor. Fuel 86(3):367–372. doi: 10.1016/j.fuel.2006.07.026 CrossRefGoogle Scholar
  40. Mondini C, Sánchez-Monedero MA, Sinicco T, Leita L (2006) Evaluation of extracted organic carbon and microbial biomass as stability parameters in lignocellulosic waste composts. J Environ Qual 35:2313–2320. doi: 10.2134/jeq2006.0055 PubMedCrossRefGoogle Scholar
  41. Morillo JA, Aguilera M, Antízar-Ladislao B, Fuentes S, Ramos-Cormenzana A, Russell NJ, Monteoliva-Sánchez M (2008) Molecular microbial and chemical investigation of the bioremediation of two-phase olive mill waste using laboratory-scale bioreactors. Appl Microbiol Biotechnol 79(2):309–317. doi: 10.1007/s00253-008-1422-5 PubMedCrossRefGoogle Scholar
  42. Paredes C, Bernal MP, Roig A, Cegarra J, Sánchez-Monedero MA (1996) Influence of the bulking agent on the degradation of olive-mill wastewater sludge during composting. Int Biodeterior Biodegrad 38(3–4):205–210. doi: 10.1016/S0964-8305(96)00052-2 CrossRefGoogle Scholar
  43. Pascual JA, Ayuso M, Hernández T, García C (1997) Fitotoxicidad y valor fertilizante de enmendantes diferentes orgánicos. Agrochimica 41:50–61Google Scholar
  44. Pichler M, Kogel-Knabner I (2000) Chemolytic analysis of organic matter during aerobic and anaerobic treatment of municipal solid waste. J Environ Qual 29:1337–1344CrossRefGoogle Scholar
  45. Rincón B, Sánchez E, Raposo F, Borja R, Travieso L, Martín MA, Martín A (2008) Effect of the organic loading rate on the performance of anaerobic acidogenic fermentation of two-phase olive mill solid residue. Waste Manag 28(5):870–877PubMedCrossRefGoogle Scholar
  46. Roig A, Cayuela ML, Sánchez-Monedero MA (2006) An overview on olive mill wastes and their valorisation methods. Waste Manag 26:960–969PubMedCrossRefGoogle Scholar
  47. Sager M (2007) Trace and nutrient elements in manure, dung and compost samples in Austria. Soil Biol Biochem 39(6):1383–1390CrossRefGoogle Scholar
  48. Sánchez-Monedero MA, Roig A, Cegarra J, Bernal MP (1999) Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting. Bioresour Technol 70:193–201CrossRefGoogle Scholar
  49. Sánchez-Monedero MA, Roig A, Paredes C, Bernal MP (2001) Nitrogen transformation during organic waste composting by the Rutgers systems and its effects on the pH, EC and maturity of the composting mixtures. Bioresour Technol 78:301–308PubMedCrossRefGoogle Scholar
  50. Sánchez-Monedero MA, Cegarra J, García D, Roig A (2002) Chemical and structural evolution of humic acids during organic waste composting. Biodegradation 13:361–371PubMedCrossRefGoogle Scholar
  51. Schnitzer M, Preston CM (1986) Analysis of humic acids by solution and solid-state carbon-13 nuclear magnetic resonance. Soil Sci Soc Am J 50:326–331Google Scholar
  52. Senesi N (1989) Composted materials as organic fertilizers. Sci Total Environ 81(82):521–542Google Scholar
  53. Senesi N, Miano TM, Brunetti G (1996) Humic-like substances in organic amendments and effects on native soil humic substances. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, New York, pp 531–593CrossRefGoogle Scholar
  54. Sequi P, de Nobili M, Leita L, Cercignani G (1986) A new index of humification. Agrochimica 30(1–2):175–179Google Scholar
  55. Serra-Wittling C, Barriuso E, Houot S (1996) Impact of composting on composts organic matter characteristics. In: de Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Blackie Academic and Professional, Glasgow, pp 262–273Google Scholar
  56. Smidt E, Meissl K, Schmutzer M, Hinterstoisser B (2008) Co-composting of lignin to build up humic substances-strategies in waste management to improve compost quality. Ind Crop Prod 27:196–201CrossRefGoogle Scholar
  57. Stentiford EI (1993) Diversity of composting systems. In: Hoitink HAJ, Keener HM (eds) Science and engineering of composting: design, environmental, microbiological and utilization aspects. Renaissance Publications, Ohio, pp 95–110Google Scholar
  58. Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley, New YorkGoogle Scholar
  59. Tomati U, Galli E, Pasetti L, Volterra E (1995) Bioremediation of olive mill wastewater by composting. Waste Manag Res 13:509–518Google Scholar
  60. Tomati U, Madejón E, Galli E (2000) Evolution of humic acid molecular weight as an index of compost stability. Compost Sci Util 8(2):108–115Google Scholar
  61. Varadachari C, Ghosh K (1984) On humus formation. Plant Soil 77(2–3):305–313CrossRefGoogle Scholar
  62. Veeken A, Nierop K, de Wilde V, Hamelers B (2000) Characterisation of NaOH-extracted humic acids during composting of a biowaste. Bioresour Technol 72:33–41CrossRefGoogle Scholar
  63. Whitney PJ, Lynch JM (1996) The importance of lignocellulosic compounds in composting. In: de Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Blackie Academic and Professional, Glasgow, pp 531–541Google Scholar
  64. Witter E, López-Real J (1988) Nitrogen losses during the composting of sewage sludge, and the effectiveness of clay soil, zeolite, and compost in adsorbing the volatilized ammonia. Biol Wastes 23:279–294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • José Antonio Alburquerque
    • 1
  • José Gonzálvez
    • 1
  • German Tortosa
    • 1
  • Ghita Ait Baddi
    • 1
  • Juan Cegarra
    • 1
  1. 1.Department of Soil and Water Conservation and Organic Waste ManagementCentro de Edafología y Biología Aplicada del Segura, CSICMurciaSpain

Personalised recommendations