Skip to main content
Log in

Impact of moisture dynamic and sun light on anthracene removal from soil

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

In a previous study, remediation of anthracene from soil was faster in the top 0–2 cm layer than in the lower soil layers. It was not clear whether this faster decrease was due to biotic or abiotic processes. Anthracene-contaminated soil columns were covered with black or transparent perforated polyethylene so that aeration occurred but that fluctuations in water content were minimal and light could reach (LIGHT treatment) or not reach the soil surface (DARK treatment), or left uncovered so that soil water content fluctuate and light reached the soil surface (OPEN treatment). The amount of anthracene, microbial biomass C, and microbial activity as reflected by the amount of CO2 produced within 3 days were determined in the 0–2 cm, 2–8 cm, and 8–15 cm layer after 0, 3, 7, 14, and 28 days. In the 0–2 cm layer of the OPEN treatment, 17% anthracene remained, 48% in the LIGHT treatment and 61% in the DARK treatment after 28 days. In the 2–8 cm and 8–15 cm layer, treatment had no significant effect on the dissipation of anthracene from soil after 14 and 28 days. It was found that light and fluctuations in water content stimulated the removal of anthracene from the top 0–2 cm soil layer, but not from the lower soil layers. It can be speculated that covering contaminated soil or pilling it up will inhibit the dissipation of the contaminant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amato M (1983) Determination of 12C and 14C in plant and soil. Soil Biol Biochem 15:611–612. doi:10.1016/0038-0717(83)90059-7

    Article  CAS  Google Scholar 

  • Anderson JP, Domsch KH (1978) Mineralization of bacteria and fungi in chloroform-fumigated soils. Soil Biol Biochem 10:207–213. doi:10.1016/0038-0717(78)90098-6

    Article  CAS  Google Scholar 

  • Atagana HI, Haynes RJ, Wallis FM (2003) Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation 14:297–307. doi:10.1023/A:1024730722751

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson S, Widenfalk A (2004) Photochemical degradation of PAHs in freshwater and their impact on bacterial growth—influence of water chemistry. Hydrobiology 469:23–32. doi:10.1023/A:1015579628189

    Article  Google Scholar 

  • Betancur-Galvis LA (2005) Evaluación de la fitorremdiacion con Athel tamarix (Tamarix aphylla) y de la bioestimulación por fertilizantes en suelos salino-alcailnos del exlago de Texcoco contaminados con hidrocarburos aromáticos. PhD Thesis, Cinvestav, Mexico

  • Betancur-Galvis LA, Alvarez-Bernal D, Ramos-Valdivia AC, Dendooven L (2006) Bioremediation of polycyclic aromatic hydrocarbon-contaminates saline-alkaline soil of the former Lake Texcoco. Chemosphere 62:1749–1760. doi:10.1016/j.chemosphere.2005.07.026

    Article  PubMed  CAS  Google Scholar 

  • Brady NC, Weil RR (1999) The nature and properties of soils. Prentice Hall, Upper Saddle River, New Jersey 07458

    Google Scholar 

  • Bremner JM (1996) Total nitrogen. In: Sparks DL (ed) Methods of soil analysis, part 3 chemical methods. Soil Science Society of America Inc, American Society of Agronomy, Madison, WI, USA, pp 1085–1122

    Google Scholar 

  • Feng XJ, Nielsen LL, Simpson MJ (2007) Responses of soil organic matter and microorganisms to reeze-thaw cycles. Soil Biol Biochem 39:2027–2037. doi:10.1016/j.soilbio.2007.03.003

    Article  CAS  Google Scholar 

  • Ford DJ, Cookson WR, Adams MA, Grierson PF (2007) Role of soil drying in nitrogen mineralization and microbial community function in semi-arid grasslands of north-west Australia. Soil Biol Biochem 39:1557–1569. doi:10.1016/j.soilbio.2007.01.014

    Article  CAS  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Methods of soil analysis, part 1 physical and mineralogical methods. Soil Science Society of America Inc, American Society of Agronomy, Madison, WI, USA, pp 383–411

    Google Scholar 

  • Grant RJ, Muckian LM, Clipson NJW, Doyle EM (2007) Microbial community changes during the bioremediation of creosote-contaminated soil. Lett Appl Microbiol 44:293–300. doi:10.1111/j.1472-765X.2006.02066.x

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson DS, Powlson DS (1976) The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol Biochem 8:209–213. doi:10.1016/0038-0717(76)90005-5

    Article  CAS  Google Scholar 

  • Johnsen RA, Wick YL, Harms H (2004) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84. doi:10.1016/j.envpol.2004.04.015

    Article  Google Scholar 

  • Kalbitz K, Solinger S, Park J-H, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304. doi:10.1097/00010694-200004000-00001

    Article  CAS  Google Scholar 

  • Kästner M, Streibich S, Beyrer M, Richnow HH, Frietsche W (1999) Formation of boun residues during microbial degradation of [14C] anthracene in soil. Appl Environ Microbiol 65:1834–1842

    PubMed  Google Scholar 

  • Kieft LT, Soroker E, Firestone MK (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126. doi:10.1016/0038-0717(87)90070-8

    Article  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Mol Biol Rev 54:305–315

    CAS  Google Scholar 

  • Lund V, Goksøyr J (1980) Effects of water on microbial mass and activity in soil. Microb Ecol 6:115–123. doi:10.1007/BF02010550

    Article  CAS  Google Scholar 

  • Mahmood SK, Rao PR (1993) Microbial abundance and degradation of polycyclic aromatic hydrocarbons in soil. Bull Environ Contam Toxicol 50:486–491. doi:10.1007/BF00191235

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Zimmerbauer A, Schinner F (2000) Monitoring of bioremediation by soil biological activities. Chemosphere 40:339–346

    Article  PubMed  CAS  Google Scholar 

  • Mcnally DL, Mihelcic JR, Lueking DR (1998) Biodegradation of three- and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions. Environ Sci Technol 32:2633–2639. doi:10.1021/es980006c

    Article  CAS  Google Scholar 

  • Morgan P, Watkinson RJ (1990) Hydrocarbon degradation in soil and methods for soil biotreatment. Crit Rev Biotechnol 8:305–333. doi:10.3109/07388558909148196

    Article  Google Scholar 

  • Mueller KE, Shann JR (2006) PAH dissipation in spiked soil: impacts of bioavailability, microbial activity, and trees. Chemosphere 64:1006–1014. doi:10.1016/j.chemosphere.2005.12.051

    Article  PubMed  CAS  Google Scholar 

  • Muszkat L, Halamann M, Raucherd D, Bir L (1992) Solar photodegradation of xenobiotic contaminants in polluted well water. J Photoch Photobio Chem (Kyoto) 65:409–417

    Article  CAS  Google Scholar 

  • Nam K, Alexander M (2001) Relationship between biodegradation rate and percentage of a compound that becomes sequestered in soil. Soil Biol Biochem 33:787–792. doi:10.1016/S0038-0717(00)00226-1

    Article  CAS  Google Scholar 

  • Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25:1239–1245. doi:10.1897/05-458R.1

    Article  PubMed  CAS  Google Scholar 

  • Riser-Roberts E (1998) Remediation of petroleum contaminated soils: biological, physical and chemical processes. Lewis Publishers, Washington, DC

    Google Scholar 

  • SAS Institute (1989) Statistic guide for personal computers version 604. SAS Institute, Cary, NC

    Google Scholar 

  • Song YF, Ou ZQ, Sun TH, Yediler A, Lorinci G, Kettrup A (1995) Analytical method for polycyclic aromatic hydrocarbons (PAHs) in soil and plants samples. Chin J Appl Ecol 6:92–96

    Google Scholar 

  • Straube WL, Nestler CC, Hansen LD, Rindgleberg D, Pritchard PH, Jones-Meehan J (2003) Remediation of polyaromatic hydrocarbons (PAHs) through landfarming with biostimulation and bioaugmentation. Acta Biotechnol 23:179–196. doi:10.1002/abio.200390025

    Article  CAS  Google Scholar 

  • Thomas GW (1996) Soil pH and soil acidity. In: Sparks DL (ed) Methods of soil analysis, part 3 chemical methods. Soil Science Society of America Inc, American Society of Agronomy, Madison, WI, USA, pp 475–490

    Google Scholar 

  • Utomo WH, Dexter AR (1982) Changes in soil aggregate water stability induced by wetting and drying cycles in non-saturated soil. Soil Sci 4:623–637

    Google Scholar 

  • Van Veen JA, Kuikman PJ (1990) Soil structural aspects of decomposition of organic matter by micro-organisms. Biodegradation 3:213–233

    Google Scholar 

  • Volkering F, Breure AM (1997) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417. doi:10.1023/A:1008291130109

    Article  PubMed  CAS  Google Scholar 

  • Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81:229–249. doi:10.1016/0269-7491(93)90206-4

    Article  PubMed  CAS  Google Scholar 

  • Winding A, Binnerup JS, Sorensen J (1994) Viability of indigenous soil bacteria assayed by respiratory activity and growth. Appl Environ Microbiol 60:2869–2875

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

E. V.-N. received grant-aided support from ‘Consejo Nacional de Ciencia y Tecnología’ (CONACyT, México). The research was funded by CONACyT project 39801-Z and ‘Secretaria de Medio Ambiente y Recursos Naturales’ (SEMARNAT, Mexico) project 2002-C01-0054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dendooven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez Núñez, E., García Gaytán, A., Luna-Guido, M. et al. Impact of moisture dynamic and sun light on anthracene removal from soil. Biodegradation 20, 191–198 (2009). https://doi.org/10.1007/s10532-008-9212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9212-4

Keywords

Navigation