Skip to main content
Log in

Biocatalytic properties of a peroxidase-active cell-free extract from onion solid wastes: caffeic acid oxidation

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The exploitation of food residual sources consists of a major factor in reducing the polluting load of food industry wastes and developing novel added-value products. Plant food residues including trimmings and peels might contain a range of enzymes capable of transforming bio-organic molecules with potential phytotoxicity, including hydrolases, peroxidases and polyphenoloxidases. Although the use of bacterial and fungal enzymes has gained interest in studies pertaining to bioremediation applications, plant enzymes have been given less attention or even disregarded. In this view, this study aimed at the investigating the use of a crude peroxidase preparation from onion solid by-products for oxidising caffeic acid, a widespread o-diphenol, whose various derivatives may occur in food industry wastes, such as olive mill waste waters. Increased enzyme activity was observed at a pH value of 5, but considerable activity was also retained for pH up to 7. Favourable temperatures for increased activity varied between 20°C and 40°C, 30°C being the optimal. Liquid chromatography-mass spectrometry analysis of a homogenate/H2O2-treated caffeic acid solution revealed the existence of a tetramer as major oxidation product. Based on the data generated, a putative pathway for the formation of the peroxidase-mediated caffeic acid tetramer was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

4-AAP:

4-Aminoantipyrine

BGP:

Bitter gourd peroxidase

CA:

Caffeic acid

CA-OP:

Caffeic acid oxidation product

CouA:

p-Coumaric acid

FA:

Ferulic acid

HRP:

Horseradish peroxidase

LC-MS:

Liquid chromatography-mass spectrometry

OMWW:

olive mill waste water

OSWH:

Onion solid waste homogenate

SA:

Sinapic acid

SBP:

Soybean peroxidase

S.D.:

Standard deviation

TMP:

Tomato peroxidase

TNP:

Turnip peroxidase

References

  • Akhtar S, Husain Q (2006) Potential applications of immobilized bitter gourd (Momordica charantia) peroxidase in the removal of phenols from polluted water. Chemosphere 65:1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Akhtar S, Khan AA, Husain Q (2005) Potential of immobilized bitter gourd (Momordica charantia) peroxidases in the decolorization and removal of textile dyes from polluted wastewater and dying effluent. Chemosphere 60:291–301. doi:10.1016/j.chemosphere.2004.12.017

    Article  PubMed  CAS  Google Scholar 

  • Arrieta-Baez D, Stark RE (2006) Modeling suberization with peroxidase-catalyzed polymerisation of hydroxycinnamic acids: cross-coupling and dimerization reactions. Phytochemistry 67:743–753. doi:10.1016/j.phytochem.2006.01.026

    Article  PubMed  CAS  Google Scholar 

  • Azbar N, Bayram A, Filibeli A, Muezzinoglu A, Sengul F, Ozer A (2004) A review of waste management options in olive oil production. Crit Rev Environ Sci Technol 34:209–247. doi:10.1080/10643380490279932

    Article  CAS  Google Scholar 

  • Bassi A, Geng Z, Gijzen M (2004) Enzymatic removal of phenol and chlorophenols using soybean seed hulls. Eng Life Sci 4:125–130. doi:10.1002/elsc.200420021

    Article  CAS  Google Scholar 

  • Bódalo A, Gómez JL, Gómez E, Bastida J, Máximo MF (2006) Comparison of commercial peroxidases for removing phenol from water solutions. Chemosphere 63:626–632. doi:10.1016/j.chemosphere.2005.08.007

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Caza N, Bewtra JK, Biswas N, Taylor KE (1999) Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Res 33:3012–3018. doi:10.1016/S0043-1354(98)00525-9

    Article  CAS  Google Scholar 

  • Cheng J, Yu SM, Zuo P (2006) Horseradish peroxidase immobilized on aluminium-pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Res 40:283–290. doi:10.1016/j.watres.2005.11.017

    Article  PubMed  CAS  Google Scholar 

  • Dalal S, Gupta MN (2007) Treatment of phenolic wastewater by horseradish peroxidase immobilized by bioaffinity layering. Chemosphere 67:741–747. doi:10.1016/j.chemosphere.2006.10.043

    Article  PubMed  CAS  Google Scholar 

  • De Marco E, Savarese M, Paduano A, Sacchi R (2007) Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem 104:858–867. doi:10.1016/j.foodchem.2006.10.005

    Article  Google Scholar 

  • DellaGreca M, Previtera L, Temussi F, Zarrelli A (2004) Low-molecular-weight components of olive oil mill waste-waters. Phytochem Anal 15:184–188. doi:10.1002/pca.766

    Article  PubMed  CAS  Google Scholar 

  • Derat E, Shaik S (2006) An efficient proton-coupled electron-transfer process during oxidation of ferulic acid by horseradish peroxidase: coming full cycle. J Am Chem Soc 128:13940–13949. doi:10.1021/ja065058d

    Article  PubMed  CAS  Google Scholar 

  • Duarte-Vázquez MA, Ortega-Tovar MA, García-Almendarez BE, Regalado C (2002) Removal of aqueous phenolic compounds from a model system by oxidative polymerisation with turnip (Brassica napus L. var purple top white globe) peroxidase. J Chem Technol Biotechnol 78:42–47. doi:10.1002/jctb.740

    Article  Google Scholar 

  • Flock C, Bassi A, Gijzen M (1999) Removal of aqueous phenols and 2-chlorophenol with purified soybean peroxidase and raw soybean hulls. J Chem Technol Biotechnol 74:303–309. doi :10.1002/(SICI)1097-4660(199904)74:4<303::AID-JCTB38>3.0.CO;2-B

  • Geng Z, Rao J, Bassi AS, Gijzen M, Krishnamoorthy N (2001) Investigation of biocatalytic properties of soybean seed hull peroxidase. Catal Today 64:233–238. doi:10.1016/S0920-5861(00)00527-7

    Article  CAS  Google Scholar 

  • González PS, Capozucca CE, Tigier HA, Milrad SR, Agostini E (2006) Phytoremediation of phenol from wastewater, by peroxidases of tomato hairy root cultures. Enzyme Microb Technol 39:647–653. doi:10.1016/j.enzmictec.2005.11.014

    Article  Google Scholar 

  • Hapiot P, Neudeck A, Pinson J, Fulcrand H, Neta P, Rolando C (1996) Oxidation of caffeic acid and related hydroxycinnamic acids. J Electroanal Chem 405:169–176. doi:10.1016/0022-0728(95)04412-4

    Article  Google Scholar 

  • Hewson WD, Dunford HB (1976) Oxidation of p-cresol by horseradish peroxidase compound I. J Biol Chem 251:6036–6042

    PubMed  CAS  Google Scholar 

  • Huang Q, Weber WJ (2004) Peroxidase-catalyzed coupling of phenol in the presence of model inorganic and organic solid phases. Environ Sci Technol 38:5238–5245. doi:10.1021/es049826h

    Article  PubMed  CAS  Google Scholar 

  • Huang Q, Weber WJ (2005) Transformation and removal of bisphenol A from aqueous phase via peroxidase-mediated oxidative coupling reactions: efficacy, products, and pathways. Environ Sci Technol 39:6029–6036. doi:10.1021/es050036x

    Article  PubMed  CAS  Google Scholar 

  • Karam J, Nicell JA (1997) Potential applications of enzymes in waste treatment. J Chem Technol Biotechnol 69:141–153. doi :10.1002/(SICI)1097-4660(199706)69:2<141::AID-JCTB694>3.0.CO;2-U

  • Kennedy K, Alemany K, Warith M (2002) Optimisation of soybean peroxidase treatment of 2, 4-dichlorophenol. Water SA 28:149–158

    CAS  Google Scholar 

  • Liu H-L, Wan X, Huang X-F, Kong L-Y (2007) Biotransformation of sinapic acid catalysed by Momordica charantia peroxidase. J Agric Food Chem 55:1003–1008. doi:10.1021/jf0628072

    Article  PubMed  CAS  Google Scholar 

  • Mantzavinos D, Kalogerakis N (2005) Treatment of olive mill effluents. Part I. Organic matter degradation by chemical and biological processes-an overview. Environ Int 31:289–295. doi:10.1016/j.envint.2004.10.005

    Article  PubMed  CAS  Google Scholar 

  • Obied HK, Allen MS, Bedgood DR Jr, Prenzler PD, Robards K (2005) Investigation of Australian olive mill waste for recovery of biophenols. J Agric Food Chem 53:9911–9920. doi:10.1021/jf0518352

    Article  PubMed  CAS  Google Scholar 

  • Oudgenoeg G, Hilhorst R, Piersma SR, Boeriu CG, Gruppen H, Hessing M et al (2001) Peroxidase-mediated cross-linking of a tyrosine-containing peptide with ferulic acid. J Agric Food Chem 49:2503–2510. doi:10.1021/jf000906o

    Article  PubMed  CAS  Google Scholar 

  • Pati S, Losito I, Palmisano F, Zambonin PG (2006) Characterization of caffeic acid enzymatic oxidation by-products by liquid chromatography coupled to electrospray ionisation tandem mass spectrometry. J Chrom A 1102:184–192. doi:10.1016/j.chroma.2005.10.041

    Article  CAS  Google Scholar 

  • Petrucci R, Astolfi P, Greci L, Firuzi O, Saso L, Marrosu G (2007) A spectroelectrochemical and chemical study on oxidation of hydroxycinnamic acids in aprotic medium. Electrochim Acta 52:2461–2470. doi:10.1016/j.electacta.2006.08.053

    Article  CAS  Google Scholar 

  • Ralph J, Bunzel M, Marita JM, Hatfield RD, Lu F, Kim H et al (2004) Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochem Rev 3:79–96. doi:10.1023/B:PHYT.0000047811.13837.fb

    Article  CAS  Google Scholar 

  • Singh A, Billingsley KA, Ward OP (2000) Transformation of polychlorinated biphenyls with oxidative enzymes. Bioproc Eng 23:421–425. doi:10.1007/s004499900121

    Article  CAS  Google Scholar 

  • Takahama U, Hirota S (2000) Deglucosidation of quercetin glucosides to the aglycone and formation of antifungal agents by peroxidase-dependent oxidation of quercetin on browning of onion scales. Plant Cell Physiol 41:1021–1029. doi:10.1093/pcp/pcd025

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi T, Wada S, Ichikawa H (1996) Removal of chlorophenols from wastewater by immobilized horseradish peroxidase. Biotechnol Bioeng 51:126–130. doi :10.1002/(SICI)1097-0290(19960705)51:1<126::AID-BIT15>3.0.CO;2-O

  • Tong Z, Qingxiang Z, Hui H, Qin L, Yi Z (1997) Removal of toxic phenol and 4-chlorophenol from waste water by horseradish peroxidase. Chemosphere 34:893–903. doi:10.1016/S0045-6535(97)00015-5

    Article  CAS  Google Scholar 

  • Tong Z, Qingxiang Z, Hui H, Qin L, Yi Z (1998) Kinetic study on the removal of toxic phenol and chlorophenol from waste water by horseradish peroxidase. Chemosphere 37:1571–1577. doi:10.1016/S0045-6535(98)00140-4

    Article  CAS  Google Scholar 

  • Veitch NC (2004) Structural determinants of plant peroxidase function. Phytochem Rev 3:3–18. doi:10.1023/B:PHYT.0000047799.17604.94

    Article  CAS  Google Scholar 

  • Wagner M, Nicell JA (2002) Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide. Water Res 36:4041–4052. doi:10.1016/S0043-1354(02)00133-1

    Article  PubMed  CAS  Google Scholar 

  • Wilberg K, Assenhaimer C, Rubio J (2002) Removal of aqueous phenol catalysed by a low purity soybean peroxidase. J Chem Technol Biotechnol 77:851–857. doi:10.1002/jctb.646

    Article  CAS  Google Scholar 

  • Wright H, Nicell JA (1999) Characterization of soybean peroxidase for the treatment of aqueous phenols. Biores Tech 70:69–79

    Article  CAS  Google Scholar 

  • Wu Y, Taylor KE, Biswas N, Bewtra JK (1997) Comparison of additives in the removal of phenolic compounds by peroxidase-catalyzed polymerisation. Water Res 31:2699–2704. doi:10.1016/S0043-1354(97)00119-X

    Article  CAS  Google Scholar 

  • Yamada K, Shibuya T, Noda M, Uchiyama N, Kashiwada A, Matsuda K et al (2007) Influence of position of substituent groups on removal of chlorophenols and cresols by horseradish peroxidase and determination of optimum conditions. Biosci Biotechnol Biochem 71:2503–2510. doi:10.1271/bbb.70298

    Article  PubMed  CAS  Google Scholar 

  • Yu B-B, Han X-Z, Lou H-X (2007) Oligomers of resveratrol and ferulic acid prepared by peroxidase-catalyzed oxidation and their protective effects on cardiac injury. J Agric Food Chem 55:7753–7757. doi:10.1021/jf0711486

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Nicell JA (2000) Treatment of aqueous pentachlorophenol by horseradish peroxidase and hydrogen peroxide. Water Res 34:1629–1637. doi:10.1016/S0043-1354(99)00326-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris P. Makris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agha, A.E., Abbeddou, S., Makris, D.P. et al. Biocatalytic properties of a peroxidase-active cell-free extract from onion solid wastes: caffeic acid oxidation. Biodegradation 20, 143–153 (2009). https://doi.org/10.1007/s10532-008-9208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9208-0

Keywords

Navigation