Skip to main content
Log in

Transformation and fate of 2,4,6-trinitrotoluene (TNT) in anaerobic bioslurry reactors under various aeration schemes: implications for the decontamination of soils

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Energetic compounds have been used in a variety of industrial and military applications worldwide leading to widespread environmental contamination. Many of these compounds are toxic and resist degradation by oxidative enzymes resulting in a need for alternative remediation methods. It has been shown that trinitrotoluene (TNT)-contaminated soil subjected to treatment in strictly anaerobic bioreactors results in tight binding of TNT transformation products to soil organic matter. The research presented here examined the fate of TNT and its metabolites in bioreactors under three different aeration regimes. In all treatment regimes, the typical metabolites of aminodinitrotoluenes and diaminonitrotoluenes were observed prior to irreversible binding into the soil fraction of the slurry. Significant transformation of TNT into organic acids or simple diols, as others report in prior work, was not observed in any of the treatments and is an unlikely fate of TNT in anaerobic soil slurries. These results indicate that aeration does not dramatically affect transformation or fate of TNT in reactor systems that receive a rich carbon source but does affect the rate at which metabolites become tightly bound to the soil. The most rapid transformations and lowest redox potentials were observed in reactors in which an aerobic headspace was maintained suggesting that aerobes play a role in establishing conditions that are most conducive to TNT reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADNT:

aminodinitrotoluene

BHI:

brain-heart infusion

DANT:

diaminonitrotoluene

dpm:

disintegrations per minute

DSMZ:

Deutsche Sammlung von Mikroorganismen und Zellkulturen

ESI-MS-MS:

electrospray ionization mass spectrometry

FAST:

facultative anaerobic soil treatment

HPLC:

high-performance liquid chromatography

LC:

liquid chromatography

MS:

mass spectrometry

TAT:

triaminotoluene

TIC:

total ion chromatogram

TNT:

trinitrotoluene

TSA:

tryptic soy agar

UL:

uniformly labeled

References

  • Achtnich C, Fernandes E, Bollag JM, Knackmuss HJ, Lenke H (1999a) Covalent binding of reduced metabolites of 15N-TNT to soil organic matter during a bioremediation process analyzed by 15N NMR spectroscopy. Environ Sci Technol 33:4448–4456

    Article  CAS  Google Scholar 

  • Achtnich C, Lenke H (2001) Stability of immobilized 2,4,6-trinitrotoluene metabolites in soil under long-term leaching conditions. Environ Toxicol Chem 20:280–283

    Article  CAS  Google Scholar 

  • Achtnich C, Lenke H, Klaus U, Knackmuss HJ (2000) Stability of immobilized TNT derivatives in soil as a function of nitro group reduction. Environ Sci Technol 34:3698–3704

    Article  CAS  Google Scholar 

  • Achtnich C, Sieglen U, Knackmuss HJ, Lenke H (1999b) Irreversible binding of biologically reduced 2,4,6-trinitrotoluene to soil. Environ Toxicol Chem 18:2416–2423

    Article  CAS  Google Scholar 

  • Biebl H, Zeng A-P, Menzel K, Deckwer W-D (1998) Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl Microbiol Biotechnol 1:24–29

    Article  Google Scholar 

  • Boopathy R, Manning J, Montemagno C, Kulpa C (1994) Metabolism of 2,4,6-trinitrotoluene by a Pseudomonas consortium under aerobic conditions. Curr Microbiol 28:131–137

    Article  CAS  Google Scholar 

  • Boopathy R, Manning JF, Kulpa CF (1998) A laboratory study of the bioremediation of 2,4,6-trinitrotoluene-contaminated soil using aerobic/anoxic soil slurry reactor. Water Environ Res 70:80–86

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH, Landmyer JE, Schumacher JG (1994) Microbial transformation of nitroaromatics in surface soils and aquifer materials. Appl Environ Microbiol 60:2170–2175

    CAS  Google Scholar 

  • Bruce NC (1998) Microbial degradation of energetic compounds. J Chem Technol Biotechnol 71:362–364

    Article  CAS  Google Scholar 

  • Carpenter DF, McCormick NG, Cornell JH, Kaplan AM (1978) Microbial transformation of 14C-labeled 2,4,6-trinitrotoluene in an activated sludge system. Appl Environ Microbiol 35:949–954

    CAS  Google Scholar 

  • Daun G, Lenke H, Reuss M, Knackmuss H (1998) Biological treatment of TNT-contaminated soil. 1. Anaerobic cometabolic reduction and interaction of TNT and metabolites with soil components. Environ Sci Technol 32:1956–1963

    Article  CAS  Google Scholar 

  • Funk SB, Crawford DL, Crawford RL, Mead G, Davis-Hoover W (1995) Full-scale anaerobic bioremediation of trinitrotoluene (TNT) contaminated soil. Appl Biochem Biotechnol 51/52:625–633

    Article  CAS  Google Scholar 

  • Funk SB, Roberts DJ, Crawford DL, Crawford RL (1993) Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl Environ Microbiol 59:2171–2177

    CAS  Google Scholar 

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000a) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotech 54:605–618

    Article  CAS  Google Scholar 

  • Hawari J, Halasz A, Paquet L, Zhou E, Spencer B, Ampleman G, Thiboutot S (1998) Characterization of metabolites in the biotransformation of 2,4,6-trinitrotoluene with anaerobic sludge: role of triaminotoluene. Appl Environ Microbiol 64:2200–2206

    CAS  Google Scholar 

  • Hawari J, Shen CF, Guiot SR, Greer CW, Rho D, Sunahara G, Ampleman G, Thiboutot S (2000b) Bioremediation of highly energetic compounds: a search for remediation technologies. Elsevier Science Ltd., Oxford, UK

    Google Scholar 

  • Hwang P, Chow T, Adrian NR (2000) Transformation of trinitrotoluene to triaminotoluene by mixed cultures incubated under methanogenic conditions. Environ Toxicol Chem 19:836–841

    Article  CAS  Google Scholar 

  • Jansen NB, Tsao GT (1983) Bioconversion of pentoses to 2,3-butanediol by Klebsiella pneumoniae. Adv Biochem Eng Biotechnol 27:85–99

    CAS  Google Scholar 

  • Kaplan DL (1990) Biotransformation pathways of hazardous energetic organo-nitro compounds. In: Kamely D, Chakabaity A, Omlan GS (eds) Biotechnology and biodegradation. Gulf Publishing, Houston, TX, pp 154–181

    Google Scholar 

  • Kaplan DL (1992) Biological degradation of explosives and chemical agents. Curr Opin Biotechnol 3:253–260

    Article  CAS  Google Scholar 

  • Kaplan DL, Kaplan AM (1982) Thermophilic biotransformations of 2,4,6-trinitrotoluene under simulated composting conditions. Appl Environ Microbiol 44:757–760

    CAS  Google Scholar 

  • Knicker H, Achtnich C, Lenke H (2001) Solid-state nitrogen-15 nuclear magnetic resonance analysis of biologically reduced 2,4,6-trinitrotoluene in a soil slurry remediation. J Environ Qual 30:403–410

    Article  CAS  Google Scholar 

  • Kreslavski VD, Vasilyeva GK, Comfort SD, Drijber RA, Shea PJ (1999) Accelerated transformation and binding of 2,4,6-trinitrotoluene in rhizosphere soil. Bioremed J 3:59–67

    Article  CAS  Google Scholar 

  • Lenke H, Achtnich C, Knackmuss HJ (2000) Perspectives of bioelimination of polynitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, Boca Raton, FL, pp 91–126

    Google Scholar 

  • Lenke H, Warrelmann J, Daun G, Hund K, Sieglen U, Walter U, Knackmuss H (1998) Biological treatment of TNT-contaminated soil. 2. Biologically induced immobilization of the contaminants and full-scale application. Environ Sci Technol 32:1964–1971

    Article  CAS  Google Scholar 

  • Lewis TA, Ederer MM, Crawford RL, Crawford DL (1997) Microbial transformation of 2,4,6-trinitrotoluene. J Ind Microbiol Biotechnol 18:89–96

    Article  CAS  Google Scholar 

  • Lewis TA, Goszczynski S, Crawford RL, Korus RA, Admassu W (1996) Products of anaerobic 2,4,6-trinitrotoluene (TNT) transformation by Clostridium bifermentans. Appl Environ Microbiol 62:4669–4674

    CAS  Google Scholar 

  • Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Manage 70:291–307

    Article  Google Scholar 

  • Maeda T, Nagafuchi N, Kubota A, Kadokami K, Ogawa HI (2006) One-step isolation and identification of hydroxylamino-dinitrotoluenes, unstable products from 2,4,6-trinitrotoluene metabolites, with thin-layer chromatography and laser time-of-flight mass spectrometry. J Chromatogr Sci 44:96–100

    CAS  Google Scholar 

  • Mason RP, Josephy PD (1985) Free radical mechanism of nitroreductase. In: Rickert DE (ed) Toxicity of nitroaromatic compounds. Hemisphere, New York, NY, pp 121–140

    Google Scholar 

  • McCormick NG, Feeherry FE, Levinson HS (1976) Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl Environ Microbiol 31:949–958

    CAS  Google Scholar 

  • Najafpour GD, Shan CP (2003) Enzymatic hydrolysis of molasses. Biores Technol 86:91–94

    Article  CAS  Google Scholar 

  • Park C, Kim T-H, Kim S, Lee J, Kim S-W (2003) Bioremediation of 2,4,6-trinitrotoluene contaminated soil in slurry and column reactors. J Biosci Bioeng 96:429–433

    CAS  Google Scholar 

  • Pennington JC, Hayes CA, Myers KF, Ochman M, Gunnison D, Felt DR, McCormick EF (1995) Fate of 2,4,6-trinitrotoluene in a simulated compost system. Chemosphere 30:429–438

    Article  CAS  Google Scholar 

  • Preuss A, Fimpel J, Diekert G (1993) Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch Microbiol 159:345–53

    Article  CAS  Google Scholar 

  • Preuss A, Rieger P-G (1995) Anaerobic transformation of 2,4,6-trinitrotoluene. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, NY, pp 69–85

    Google Scholar 

  • Rieger P-G, Knackmuss H (1995) Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, NY, pp 1–18

    Google Scholar 

  • Rosenblatt DH, Burrows EP, Mitchell WR, Parmer DL (1991) Organic explosives and related compounds. In: Hutzinger O (ed) The handbook of environmental chemistry. Springer-Verlag, Berlin, pp 195–234

    Google Scholar 

  • Schmelling DC, Gray KA, Kamat PV (1998) Radiation-induced reactions of 2,4,6-trinitrotoluene in aqueous solution. Environ Sci Technol 32:971–974

    Article  CAS  Google Scholar 

  • Spain JC (1995) Biodegradation of nitroaromatic compounds. Ann Rev Microbiol 49:523–555

    Article  CAS  Google Scholar 

  • Stolpmann H, Lenke H, Warrelmann J, Heurmann E, Freuchnicht A, Daun G, Knackmuss HJ (1995) Bioremediation of TNT-contaminated soil by the TERRANOX system. In: Hinchee RE, Sayles GD, Skeen RS (eds) Biological unit processes for hazardous waste treatment. Battelle Press, Columbus, OH, pp 283–288

    Google Scholar 

  • Swift RS (1996) Organic matter characterization. In: Sparks DL (ed) Methods of soil analysis, Part 3: chemical methods. SSSA and ASA, Madison, WI, pp 1011–1069

    Google Scholar 

  • USEPA (1995) J.R. Simplot ex-situ bioremediation technology for treatment of TNT-contaminated soils, superfund innovative technology evaluation program. EPA/540/R-95/529. U.S. EPA National Risk Management Research Laboratory, Cincinnati, OH

  • Vorbeck C, Lenke H, Fischer P, Knackmuss HJ (1994) Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J Bacteriol 176:932–934

    CAS  Google Scholar 

  • Vorbeck C, Lenke H, Fischer P, Spain JC, Knackmuss HJ (1998) Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 64:246–252

    CAS  Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to members of the University of Idaho Environmental Biotechnology Institute for technical assistance, support, and advice. The authors would like to specifically thank T. Lewis and A. Paszczynski for assistance with the experimental design and analysis; T. Kinard, J. Coleman, and L. Allenbach for their help in sampling and maintenance of the treatment reactors; and Cornelia Sawatzky for editorial assistance. This research was funded by the Department of Defense Air Force Office of Scientific Research through F49620-93-1-1064 awarded to R. Crawford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Crawford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newcombe, D.A., Crawford, R.L. Transformation and fate of 2,4,6-trinitrotoluene (TNT) in anaerobic bioslurry reactors under various aeration schemes: implications for the decontamination of soils. Biodegradation 18, 741–754 (2007). https://doi.org/10.1007/s10532-007-9103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-007-9103-0

Keywords

Navigation