Skip to main content
Log in

Combined biological–chemical procedure for the mineralization of TNT

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Contamination of ground and surface water with 2,4,6-trinitrotoluene (TNT) and its biological and chemical transformation products are a persisting problem at former TNT production sites. We have investigated the photochemical degradation of TNT and its aminodinitro-(ADNT) and diaminonitrotoluene (DANT) metabolites using OH-radical generating systems like Fenton and hydrogen peroxide irradiated with UV, in order to compare the degradation and mineralization rate of ADNT- and DANT-isomers with TNT itself. As a result, we find that the aminoderivatives were mineralized much faster than TNT. Consequently, as ADNTs and DANTs are the known dead-end products of biological TNT degradations, we have combined our photochemical procedure with a preceding biological treatment of TNT by a mixed culture from sludge of a sewage plant. This consecutive degradation procedure, however, shows a reduced mineralization rate of the ADNTa and DANTs in the biologically derived supernatant as compared to the pure substances, suggesting that during the biological TNT treatment by sludge competing substrates are released into the solution, and that a more defined biological procedure would be necessary in order to achieve an effective, ecologically and economically acceptable mineralization of TNT from aqueous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1:
Scheme 2:
Scheme 3:
Scheme 4:
Scheme 5:
Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker A, Spencer RG (2004) Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci Total Environ 333:217–232

    Article  CAS  Google Scholar 

  • Bruns-Nagel D, Breitung J, Steinbach K, Gemsa D, von Low E, Gorontzy T, Blotevogel KH (1997) Bioremediation of 2,4,6-trinitrotoluene-contaminated soil by anaerobic/aerobic and aerobic methods. In: Alleman BC, Leeson A (Eds) In situ and On-Site Bioremediation, 9–14

  • Burlinson N, Sitzmann M, Kaplan L, Kayser E (1979) Photochemical generation of the 2,4,6-trinitrobenzyl anion. J Org Chem 44:3695–3698

    Article  CAS  Google Scholar 

  • Carey JH (1992) An introduction to advanced oxidation processes (AOP) for destruction of organics in wastewater. Water Pollut Res J Can 27:1–21

    Google Scholar 

  • Claus H, Bausinger T, Lehmler I, Perret N, Fels G, Dehner U, Preuß J, König H (2006). Bacterial elimination of 2,4,6-trinitrotoluene (TNT) by Raoultella terrigena. Biodegradation (in press)

  • Crawford RL (1995) The microbiology and treatment of nitroaromatic compounds. Curr Opin Biotechnol 6:329–336

    Article  CAS  Google Scholar 

  • Dillert R, Siebers U, Renwrantz A, Bahnemann D (1997) Oxidation von Nitro- und Aminoaromaten mit Wasserstoffperoxid. Verbundvorhaben biologische Sanierung von Rüstungsaltlasten, Tagungsband zum 3 Statusseminar am 26 und 27 02 in Berlin (Hrsg: Umweltbundesamt), BMBF, Bonn Kapitel G

  • Ederer M, Lewis TA, Crawford RL (1997) 2,4,6-Trinitrotoluene (TNT) transformation by Clostidia isolated from a munition-fed bioreactor: comparison with non-adapted bacteria. J Ind Microbiol Biotechnol 18:75–80

    Article  CAS  Google Scholar 

  • Edwards JO, Curci R (1992) Fenton type activation and chemistry of hydroxyl radical. In: Strukul G (Ed) Catalytic oxidations with hydrogen peroxide. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Eilers A, Rüngeling E, Stuendl UM, Gottschalk G (1999) Metabolism of TNT by the white-rot fungus bjerkanda dausta dsm 3375 depends on cytochrome p 450. Appl Microbiol Biotechnol 53:75–80

    Article  CAS  Google Scholar 

  • Emmrich M (1999) Kinetics of the alkaline hydrolysis of 2,4,6-trinitrotoluene in aqueous solution and highly contaminated soils. Environ Sci Technol 33:3802–3805

    Article  CAS  Google Scholar 

  • Esteve-Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 335–352

  • Fukushima M, Tatsumi K, Nagao S (2001) Degradation characteristics of humic acids during photo-Fenton processes. Environ Sci Technol 35:3683–3690

    Article  CAS  Google Scholar 

  • Glover DJ, Hoffsommer JC, Kubose DA, (1977) Anal Chim Acta 88: 381–384

    Google Scholar 

  • Hampton ML, Sisk WE (1997) Environmental stability of windrow composting of explosives-contaminated soils. In: Tedder DW (Ed) Emerging Technologies in Hazardous Waste Management IX, Division of Industrial and Engineering Chemistry, 252–257

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618

    Article  CAS  Google Scholar 

  • Heiss G, Knackmuss HJ (2002) Bioelimination of trinitroaromatic compounds: immobilization versus mineralization. Curr Opin Microbiol 5:282–287

    Article  CAS  Google Scholar 

  • Hess TF, Lewis TA, Crawford RL, Katamneni S, Wells JH, Watts RJ (1998) Combined photocatalytic and fungal treatment for the destruction of 2,4,6-trinitrotoluene (TNT). Wat Res 32:1481–1491

    Article  CAS  Google Scholar 

  • Hess TF, Schrader PS (2002) Coupled abiotic-biotic mineralization of 2,4,6-trinitrotoluene (TNT). J Environ Qual 31:736–744

    CAS  Google Scholar 

  • Ho PC (1986) Photooxidation of 2,4-dinitrotoluene in the presence of hydrogen peroxide. Environ Sci Technol 20:260–267

    Article  CAS  Google Scholar 

  • Hofrichter M, Scheibner K, Schneegaβ I, Fritsche W (1998) Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from nematoloma frowardii. Appl Environ Microbiol 64:399–404

    CAS  Google Scholar 

  • Honeycutt ME, Jarvis AS, McFarland VA (1996) Cytotoxicity and mutagenicity of 2,4,6-trinitrotuene and its metabolites. Ecotox Environ Safety 35:282–287

    Article  CAS  Google Scholar 

  • Hwang HM, Slaughter LF, Cook SM, Cui H (2000a) Degradation of TNT in a freshwater environment. Bull Environ Contam Toxicol 65:228–235

    Article  CAS  Google Scholar 

  • Hwang HM, Slaughter LF, Cook SM, Cui H (2000b) Photochemical and microbial degradation of 2,4,6-trinitrotoluene (TNT) in a freshwater environment. Bull Environ Contam Toxicol 65:228–235

    Article  CAS  Google Scholar 

  • Kearney PC, Zeng Q, Ruth JM (1983) Oxidative pretreatment accelerates TNT metabolism in soils. Chemosphere 12:1583–1597

    Article  CAS  Google Scholar 

  • Kröger M, Fels G (2000) 14C-TNT synthesis reinvestigated. J Label Compds Radiopharm 43:217–227

    Article  Google Scholar 

  • Kröger M, Fels G (2002) Microbiotic synthesis of 14C-ringlabelled aminodinitrotoluenes (ADNT) and diaminonitrotoluenes (DANT). J Label Compds Radiopharm 45:249–255

    Article  CAS  Google Scholar 

  • Kröger M, Schumacher ME, Risse H, Fels G (2004) Biological reduction of TNT as part of a combined biological-chemical procedure for mineralization. Biodegradation 15:241–248

    Article  Google Scholar 

  • Lachance B, Robidoux PY, Hawari J, Ampleman G, Thiboutout S, Sunahara GI (1999) Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro. Mutat Res 444:25–39

    CAS  Google Scholar 

  • Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698

    Article  CAS  Google Scholar 

  • Lenke H, Achtnich C, Knackmuss HJ (2000) Perspectives of bioelimination of polynitroaromatic compounds. In: Spain JC, Hughes JB, Knackmus HJ (Eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, pp. 91–126

    Google Scholar 

  • Lewis TA, Crawford RL, Katamneni S, Wells JH, Watts, RJ, Hess TF (1998) Wat Res 32:1481–1491

    Google Scholar 

  • Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Managem 70:291–307

    Article  Google Scholar 

  • Li AZ, Marx KA, Walker J, Kaplan DL (1997) Trinitrotoluene and metabolites binding to humic acid. Environ Sci Technol 31:584–589

    Article  CAS  Google Scholar 

  • Li ZM, Comfort SD, Shea PJ (1997) Destruction of 2,4,6-trinitrotoluene by Fenton oxidation. J Environ Qual 26:480–487

    CAS  Google Scholar 

  • Li ZM, Shea PJ, Comfort SD (1998) Nitrotoluene destruction by UV-catalyzed Fenton oxidation. Chemosphere 36:1849–1865

    Article  CAS  Google Scholar 

  • Lindsey ME, Tarr MA (2000) Inhibition of hydroxyl radical reaction with aromatics by dissolved organic matter. Environ Sci Technol 34:444–449

    Article  CAS  Google Scholar 

  • Liou MJ, Lu MC, Chen JN (2003) Oxidation of explosives by Fenton and photo-Fenton processes. Wat Res 37:3172–3179

    Article  CAS  Google Scholar 

  • Makarova O, Rajh T, Thurnauer MC, Martin A, Kemme PA, Cropek D (2000) Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene. Environ Sci Technol 34:4797–4803

    Article  CAS  Google Scholar 

  • Martinetz D, Rippen G (1990) TNT. In: Rippen, G (Ed), Handbuch Umweltchemikalien ecomed, Landsberg/Lech

  • Nahen M, Bahnemann R, Dillert R, Fels G (1997) Photocatalytc degradation of TNT: Reductive and oxidative pathways. J Photochem Photobiol A: Chemistry 110:191–199

    Article  CAS  Google Scholar 

  • Popesku JT, Singh A, Zhao JS, Hawari J, Ward OP (2004) Metabolite production during transformation of 2,4,6-trinitrotoluene (TNT) by a mixed culture acclimated and maintained on crude oil-containing media. Appl Microbiol Biotechnol 65:739–746

    Article  CAS  Google Scholar 

  • Preuss J, Eitelberg F (1999) Hallschlag-ISBN 3-88250-045-X (Erhältlich beim Geographischen Institut der Universität Mainz, Saarstr 21, 55121 Mainz)

  • Rieger PG, Knackmuss HJ (1995) Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. Spain JC (Ed) Biodegradation of Nitroaromatic Compounds, 1–18

  • Robidoux PY, Svendsen C, Sarrazin MST, Ampleman G, Hawari J, Weeks JM, Sunahara GI (2005) Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms. Arch Environ Contam Toxicol 48:56–67

    Article  CAS  Google Scholar 

  • Rodgers JD, Bunce NJ (2001) Treatment methods for the remediation of nitroaromatic explosives. Wat Res 35:2101–2111

    Article  CAS  Google Scholar 

  • Scheibner K, Hofrichter M, Herre A, Michels J (1997) Screening for fungi intensively mineralizing TNT. Appl Microbiol Biotechnol 47:452–457

    Article  CAS  Google Scholar 

  • Schmelling DC, Gray KA, Kamat PV (1997) The influence of solution matrix on the photocatalytic degradation of TNT in TiO2 slurries. Wat Res 31:1439–1447

    Article  CAS  Google Scholar 

  • Schmidt A, Butte W (1999) Photocatalytic degradation of reduction products of TNT. Chemosphere 38:1293–1298

    Article  CAS  Google Scholar 

  • Schrader PS, Hess TF (2004) Coupled abiotic-biotic mineralization of 2,4,6-trinitrotoluene (TNT) in soil slurry. J Environ Qual 33:1202–1209

    Article  CAS  Google Scholar 

  • Simjouw JP, Minor EC, Mopper K (2005) Isolation and characterization of estuarine dissolved organic matter: Comparison of ultrafiltration and C-18 solid-phase extraction techniques. Marine Chem 96:219–235

    Article  CAS  Google Scholar 

  • Son HS, Lee SJ, Cho IH, Zoh KD (2004) Kinetics and mechanism of TNT degradation in TiO2 photocatalysis. Chemosphere 57:309–317

    Article  CAS  Google Scholar 

  • Spanggord RJ, Yao D, Mill T (2000) Kinetics of aminodinitrotoluene oxidations with ozone and hydroxyl radical. Environ Sci Technol 34:450–454

    Article  CAS  Google Scholar 

  • Szöcs A (1998). Geoökologische Systemanalyse und Bestimmung der Nitroaromaten-Mobilität auf dem großflächigen Rüstungsaltstandort Stadtallendorf bei Marburg. Diss FB Geowiss Uni Mainz

  • Thorn KA, Thorne PG, Cox LG (2004) Alkaline hydrolysis/polymerization of 2,4,6-trinitrotoluene: Characterization of products by 13C- and 15N-NMR. Environ Sci Technol 38:2224–2231

    Article  CAS  Google Scholar 

  • Yin H, Wood TK, Smets BF (2005) Reductive transformation of TNT by Escherichia coli: pathway description. Appl Microbiol Biotechnol 67:397–404

    Article  CAS  Google Scholar 

  • Zaripov SA, Naumov AV, Suvorova ES, Garusov AV, Naumova RP (2004) Initial Stages of 2,4,6-Trinitrotoluene Transformation by Microorganisms. Microbiol 73:398–403

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Fels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kröger, M., Fels, G. Combined biological–chemical procedure for the mineralization of TNT. Biodegradation 18, 413–425 (2007). https://doi.org/10.1007/s10532-006-9076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-006-9076-4

Keywords

Navigation