Biodegradation

, Volume 18, Issue 3, pp 311–316 | Cite as

Decolorization potential of mixed microbial consortia for reactive and disperse textile dyestuffs

  • Muhammad Asgher
  • H. N. Bhatti
  • S. A. H. Shah
  • M. Javaid Asad
  • R. L. Legge
Original Paper

Abstract

Four different aerobic mixed consortia collected from basins of wastewater streams coming out of dying plants of Crescent Textile (CT), Sitara Textile (ST), Chenab Fabrics (CF) and Noor Fatima Textile (NF), Faisalabad, Pakistan were applied for decolorization of Drimarene Orange K-GL, Drimarene Brilliant Red K-4BL, Foron Yellow SE4G and Foron Blue RDGLN for 10 days using the shake flask technique. CT culture showed the best decolorization potential on all dyestuffs followed by ST, NF and CF, respectively. CT could completely decolorize all dyes within 3–5 days. ST cultures showed effective decolorization potential on Foron Yellow SE4G and Drimarene Brilliant Red K-4BL but complete color removal was achieved after 4 and 7 days, respectively. NF culture showed 100% decolorization efficiencies on Foron Yellow SE4G and Foron Blue RDGLN but it took comparatively longer time periods (5–7 days). Where as, the NF culture had decolorized only 40% and 50% of Drimarene orange and red, respectively, after 10 days. CF caused complete decolorization of Foron Blue RDGLN and Drimarene Brilliant Red K-4BL after 4 and 8 days, respectively but it showed poor performance on other two dyes.

Keywords

Mixed cultures Textile dyestuffs Decolorization potential Industrial effluents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adedayo O, Javadpour S, Taylor C, Anderson WA, Moo-Young M (2004) Decolorization and detoxification of methyl red by aerobic bacteria from a wastewater treatment plant. World J Microbiol Biotechnol 20:545–550CrossRefGoogle Scholar
  2. Asgher M, Shah SAH, Ali M, Legge RL (2006a) Decolorization of some reactive textile dyes by white rot fungi isolated in Pakistan. World J Microbiol Biotechnol 22(1):89–93CrossRefGoogle Scholar
  3. Asgher M, Asad MJ, Legge RL (2006b) Enhanced lignin peroxidase synthesis by Phanerochaete Chrysosporium in solid state bioprocessing of a lignocellulosic substrate. World J Microbiol Biotechnol 22:449–453CrossRefGoogle Scholar
  4. Banat IM, Nigam P, Singh D, Marchant R (1994) Microbial decolorization of textile dye containing effluents. Biores Technol 58:217–227CrossRefGoogle Scholar
  5. Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile dye containing effluents: a review. Biores Technol 58:217–227CrossRefGoogle Scholar
  6. Boer CG, Obici L, de Souza CGM, Piralta RM (2004) Decolorization of synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main lignolytic enzyme. Biores Technol 94:107–112CrossRefGoogle Scholar
  7. Chagas EP, Durrant LR (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajor-caju. Enz Microb Technol 29:473–477CrossRefGoogle Scholar
  8. Chung KT, Stevens SE Jr, Cernigliar CR (1992) The reduction of azo dyes by the intestinal microflora. CRC Crit Rev Microbiol 18:175–190Google Scholar
  9. Chung KT, Stevens SE Jr (1993) Decolorization of azo dyes by environmental microorganisms and helminths. Environ Toxicol Chem 12:2121–2132Google Scholar
  10. Cripps C, Bumps JS, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 58:3605–3613Google Scholar
  11. da Silva CG, Faria JL (2003) Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. J Photochem Photobiol A: Chem 155:133–143CrossRefGoogle Scholar
  12. Hildenbrand S, Schmahl FW, Wodarz R, Kimmel R, Dartsch PC (1999) Azo dyes and carcinogenic aromatic amines in cell cultures. Int Arch Occupat Environ Health 72:52–56CrossRefGoogle Scholar
  13. Kirby N, Marchant R, McMullan G (2000) Decolorization of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiol Lett 188:93–96CrossRefGoogle Scholar
  14. Knapp JS, Newby PS (1995) Decolorization of a chemical industry effluent by white rot fungi. Water Res 33:575–577CrossRefGoogle Scholar
  15. Liu S, Suflita JM (1993) Ecology and evolution of microbial populations for bioremediation. Trends Biotechnol 11:344–352CrossRefGoogle Scholar
  16. Levine WG (1991) Metabolism of azo dyes: implication for detoxification and activation. Drug Metab Res 23:253–309Google Scholar
  17. Martins MAM, Queiroz MJ, Silvestre AJD, Lima N (2002) Relationship of chemical structure of textile dye on the␣preadaptation medium and the potentialities of their biodegradation by Phanerochaete chrysosporium. Res Microbiol 153:361–368CrossRefGoogle Scholar
  18. Moosvi S, Keharia H, Madamwar D (2005) Decolorization of textile dye ReactiveViolet 5 by a newly isolated bacterial consortium RVM 11.1. World J Microbiol Biotechnol 21:667–672CrossRefGoogle Scholar
  19. Nigam P, Banat IM, Marchant R (1996) Decolorisation of effluent from the textile industry by a microbial consortium. Biotech Lett 18:117–120CrossRefGoogle Scholar
  20. Okazaki S, Nagasawa S, Goto M, Furusaki S, Wariishi H, Tanaka H (2002) Decolorization of azo dye and anthraquinone dye in hydrophobic organic media using microperoxidase-11 entrapped in reverse micelles. Bioch Engin J.12:237–241CrossRefGoogle Scholar
  21. O’Neill C, Lopez A, Esteves S, Hawkes FR, Hawkes DL, Wilcox S (2000) Azo-dye degradation in an anaerobic–aerobic treatment system operating on simulated textile effluent. Appl Microb Biotechnol 53:249–254CrossRefGoogle Scholar
  22. O’Neill C, Hawkes FR, Hawkes DL, Lourenco ND, Pinheiro HM, Delee W (1999) Color in textile effluents: sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018CrossRefGoogle Scholar
  23. Pasti-Gragsby MB, Paszczynski A, Goszczynski S, Crawforg DL, Crawford RL (1992) Influence of aromatic substitution patterns on azo dye degrability by Streptomyces spp. and Phanerochaete chrysosporium. App Environ Microbiol 58:3605–3613Google Scholar
  24. Quezada M, Linares I, Buitron G (2000) Use of sequencing batch biofilter for degradation of azo dyes (acids and bases). Water Sci Technol 42:329–336Google Scholar
  25. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores Technol 77:247–255CrossRefGoogle Scholar
  26. Senan RC, Abraham TE (2004) Bioremediation of textile azo dyes by aerobic bacterial consortium. Biodegradation 15:275–280CrossRefGoogle Scholar
  27. Selvam K, Swaminathan K, Keo-Sang C (2003) Decolorization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp. Biores Technol 88:115–119CrossRefGoogle Scholar
  28. Synder CJP, Asgher M, Scharer JM, Legge RL (2006) Biodegradation kinetics of 2,4,6-Trichlorophenol by an acclimated mixed microbial culture under aerobic conditions. Biodegradation, Published on line: Feb.17, 2006; DOI 10.1007/s10532–005–9024–8 Google Scholar
  29. Verma P, Madamwar D (2003) Decolorization of synthetic dyes by a newly isolated strain of Serratia marcescens. World J Microbiol Biotechnol 19:615–618CrossRefGoogle Scholar
  30. Watanabe K, Baker PW (2000) Environmentally relevant microorganisms. J Biosci Bioeng 89:1–11CrossRefGoogle Scholar
  31. Wong PK, Yuen PY (1998) Decolorization and biodegradation of N,N-dimethyl-p-phenylenediamine by Klebsiella pneumoniae RS-13 and Acetobacter liquefaciens S-1. J Appl Microbiol 85:79–87CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Muhammad Asgher
    • 1
  • H. N. Bhatti
    • 1
  • S. A. H. Shah
    • 2
  • M. Javaid Asad
    • 1
  • R. L. Legge
    • 3
  1. 1.Department of ChemistryUniversity of AgricultureFaisalabadPakistan
  2. 2.Department of ChemistryUniversity of SargodhaSargodhaPakistan
  3. 3.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations