Biodegradation

, Volume 17, Issue 2, pp 3–9 | Cite as

Biodegradation of Crude Oil by Thermophilic Bacteria Isolated from a Volcano Island

  • Christos Meintanis
  • Kalliopi I. Chalkou
  • Konstantinos Ar. Kormas
  • Amalia D. Karagouni
Article

Abstract

One-hundred and fifty different thermophilic bacteria isolated from a volcanic island were screened for detection of an alkane hydroxylase gene using degenerated primers developed to amplify genes related to the Pseudomonas putida and Pseudomonas oleovorans alkane hydroxylases. Ten isolates carrying the alkJ gene were further characterized by 16s rDNA gene sequencing. Nine out of ten isolates were phylogenetically affiliated with Geobacillus species and one isolate with Bacillus species. These isolates were able to grow in liquid cultures with crude oil as the sole carbon source and were found to degrade long chain crude oil alkanes in a range between 46.64% and 87.68%. Results indicated that indigenous thermophilic hydrocarbon degraders of Bacillus and Geobacillus species are of special significance as they could be efficiently used for bioremediation of oil-polluted soil and composting processes.

Keywords

alkalkanes Geobacillus Santorini 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atlas RM (1993) Handbook of Microbiology Media. In: Parks LC (Ed) (pp 883) CRC Press, Florida.Google Scholar
  2. Q Chen, DB Janssen and B Witholt, Physiological changes and alk gene instability in Pseudomonas oleovorans during induction and expression of alk genes. J. Bacteriol. 178 (1996) 5508-5512Google Scholar
  3. B Cho, H Chino, T Kunito, S Matsumoto and H Oyaizu, Analysis of oil components and hydrocarbon-utilizing microorganisms during laboratory scale bioremedation of oil contaminated soil of Kuwait. Chemosphere 35 (1997) 1613-1621CrossRefGoogle Scholar
  4. H Feitkenhauer, R Muller and H Markl, Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60–70 °C by Thermus and Bacillus spp. Biodegradation 14 (2003) 367-372CrossRefGoogle Scholar
  5. T Furuya, Y Ishii, K Noda, K Kino and K Kirimura, Thermophilic biodesulfurization of hydrodesulfurized light gas oils by Mycobacterium phlei WU-F1. FEMS Microbiol. Lett. 221 (2003) 137-142CrossRefGoogle Scholar
  6. HH Hannert, Bacterial and chemical iron oxide deposition in a shallow Bay on Palaea Kameni, Santorini, Greece: microscopy, electron probe microanalysis, and photometry of in situ experiments. Geomicrobiol. J. 19 (2002) 317-342CrossRefGoogle Scholar
  7. R Hao, A Lu and G Wang, Crude-oil-degrading thermophilic bacterium isolated from an oil field. Can. J. Microbiol. 50 (2004) 175-182CrossRefGoogle Scholar
  8. C Haught, DL Wilkinson, K Zgafas and RG Harrison, A method to insert a DNA fragment into a double-stranded plasmid. Biotechniques 16 (1994) 46-48Google Scholar
  9. UJ Ijah and SP Antai, Removal of Nigerian light crude oil in soil over a 12 month period. Int. Biodeterior. Biodegradation 51 (2003) 93-99CrossRefGoogle Scholar
  10. K Kirimura, K Harada, H Iwasawa, T Tanaka, Y Iwasaki, T Furuya, Y Ishii and K Kino, Identification and functional analysis of the genes encoding dibenzothiophene-desulfurizing enzymes from thermophilic bacteria. Appl. Microbiol. Biotechnol. 65 (2004) 703-713CrossRefGoogle Scholar
  11. N Kuisiene, J Raugalas and D Chitavichius, Geobacillus lituanicus sp. nov. Int. J. Syst. Evol. Microbiol. 54 (2004) 1991-1995CrossRefGoogle Scholar
  12. DJ Lane, 16S/23S rRNA sequencing. In: E Stackebrandt and M Goodfellow (eds.) Nucleic Acid Techniques in Bacterial Systematics. New York.: Wiley (1991) pp. 115-175Google Scholar
  13. JG Leahy and RR Colwell, Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54 (1990) 305-315Google Scholar
  14. J Milcic-Terzic, Y Vidal-Lopez and S Saval, Detection of catabolic genes in indigenous microbial consortia isolated from a diesel contaminated soil. Bioresour. Technol. 78 (2001) 47-54CrossRefGoogle Scholar
  15. S Mishra, J Jyot, RC Kuhad and B Lal, In situ bioremediation potential of an oily sludge degrading bacterial consortium. Curr. Microbiol. 43 (2001) 328-335CrossRefGoogle Scholar
  16. S Mukherji, S Jagadevan, G Mohapatra and A Vijay, Biodegradation of diesel oil by an Arabian Sea sediment culture isolated from the vicinity of an oil field. Bioresour. Technol. 95 (2004) 281-286CrossRefGoogle Scholar
  17. TN Nazina, TP Tourova, AB Poltaraus, EV Novikova, AA Grigoryan, AE Ivanova, AM Lysenko, VV Petrunyaka, GA Osipov, SS Belyaev and MV Ivanov, Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen nov., sp. nov & Geobacillus uzenensis sp. nov from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacilllus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51 (2001) 433-446Google Scholar
  18. U Nübel, B Engelen, A Felske, J Snaidr, A Wieshuber, RI Amann, W Ludwig and H Backhaus, Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 19 (1996) 5636-5643Google Scholar
  19. VJ Orphan, LT Taylor, D Hafenbradl and EF Delong, Culture dependent & culture independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl. Environ. Microbiol. 66 (2000) 700-711CrossRefGoogle Scholar
  20. KS Rahman, T Rahman, P Lakshmanaperumalsamy and IM Banat, Occurrence of crude oil degrading bacteria in gasoline and diesel station soils. J. Basic Microbiol. 42 (2002) 284-291CrossRefGoogle Scholar
  21. F Schinner and R Margesin, Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol. 56 (2001) 650-663CrossRefGoogle Scholar
  22. K Sei, Y Sugimoto, K Mori, H Maki and T Kohno, Moni- toring of alkane degrading bacteria in sea water microcosm during crude oil degradation by polymerase chain reaction based on alkane catabolic genes. Environ. Microbiol. 5 (2003) 517-522CrossRefGoogle Scholar
  23. E Sepic, C Trier and H Leskovsek, Biodegradation studies of selected hydrocarbons from diesel oil. Analyst 121 (1996) 1451-1456CrossRefGoogle Scholar
  24. M Shimura, K Kimbara, H Nagato and T Hatta, Isolation and characterization of a thermophilic Bacillus sp. JF8 capable of degrading polychlorinated biphenyls and naphthalene. FEMS Microbiol. Lett. 178 (1999) 87-93CrossRefGoogle Scholar
  25. TH Smits, B Witholt and JB Bellen van, Molecular screening for alkane hydroxylase genes in Gram negative and Gram positive strains. Environ. Microbiol. 4 (1999) 307-317CrossRefGoogle Scholar
  26. Swofford DL (2003) PAUP* Phylogenetic Analysis Using Parsimony (*& Other Methods) Version 4 Sinauer Associates. Sunderland, Massachusetts.Google Scholar
  27. W Verstraete and EM Top, Soil clean-up: lessons to remember. Int. Biodeterior. Biodegradation 43 (1999) 147-153CrossRefGoogle Scholar
  28. M Vinas, M Griffol, J Sabate and AM Solanas, Biodegradation of a crude oil by three microbial consortia of different origins and metabolic capabilities. J. ind. Microbiol. Biotechnol. 28 (2002) 252-260CrossRefGoogle Scholar
  29. K Watanabe, Microorganisms relevant to bioremediation. Curr. Opinion Biotechnol. 12 (2001) 237-241CrossRefGoogle Scholar
  30. Y Wang, PC Lau and DK Button, A marine oligobacterium harboring genes known to be part of aromatic hydrocarbon degradation pathways of soil Pseudomonads. Appl. Environ. Microbiol. 62 (1996) 2169-2173Google Scholar
  31. LG Whyte, L Burbonniere and CW Greer, Biodegradation of petroleum hydrocarbons by psychotrophic Pseudomonas strains possesing both alkane & naphthalene catabolic pathways. Appl. Environ. Microbiol. 63 (1997) 3719-3723Google Scholar
  32. L Yuste, M Corbella, M Turiegano, U Karlson, A Puyet and F Rojo, Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol. Ecol. 32 (2000) 69-75CrossRefGoogle Scholar
  33. WQ Zhuang, JH Tay and ST Tay, Bacillus napthovorans sp from oil-contaminated tropical marine sediments & its role in napthalene biodegradation. Appl. Microbiol. Biotechnol. 58 (2002) 547-533CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Christos Meintanis
    • 1
  • Kalliopi I. Chalkou
    • 1
  • Konstantinos Ar. Kormas
    • 2
  • Amalia D. Karagouni
    • 1
  1. 1.Department of Botany, Faculty of Biology, Microbiology GroupUniversity of AthensAthensGreece
  2. 2.Department of Animal Production and Aquatic Environment, Faculty of Agricultural SciencesUniversity of ThessalyVolosGreece

Personalised recommendations