Skip to main content

Advertisement

Log in

Impacts of Bioremediation Schemes on Bacterial Population in Naphthalene-Contaminated Marine Sediments

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Microcosm experiments were conduced in which the surface of marine sediment was contaminated with naphthalene and subjected to either of three different bioremediation schemes, i.e., biostimulation (BS) by supplementing with slow-release nitrogen and phosphorus fertilizers, bioaugmentation (BA) by inoculating with Cycloclasticus sp. E2, an aromatics-degrading bacterium identified to play an important role for aromatic-hydrocarbon degradation in marine environments and combination (CB) of BS and BA. These three schemes were found to be similarly effective for removing naphthalene, while naphthalene disappearance in sediment without any treatment (WT) was slower than those in the treated sediments. Shifts in bacterial populations during and after bioremediation were analyzed by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments. It was found that the Cycloclasticus rRNA type occurred as the strongest bands in the course of naphthalene degradation. Clustering analysis of DGGE profiles showed that bacterial populations in the WT, BS and CB sediments differed consistently from those in the uncontaminated control, while the profile for the BA sediment was finally included in the cluster for uncontaminated control sediments after a 150-day treatment. The results suggest that bioaugmentation with ecologically competent pollutant-degrading bacteria is an ecologically promising bioremediation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

bioaugmentation

BS:

biostimulation

CB:

combination of biostimulation and bioaugmentation

DGGE:

denaturing gradient gel electrophoresis

WT:

without treatment

References

  • J Angerer C Mannschreck J Gündel (1997) ArticleTitleBiological monitoring and biochemical effect monitoring of exposure to polycyclic aromatic hydrocarbons J. Int. Arch. Occup. Environ. Health 70 365–377 Occurrence Handle1:CAS:528:DyaK2sXotV2qsbk%3D Occurrence Handle10.1007/s004200050231

    Article  CAS  Google Scholar 

  • ID Bossert G Campeau (1995) Cleanup of petroleum hydrocarbon contamination in soil LY Young CE Cerniglia (Eds) Microbial Transformation and Degradation of Toxic Organic Chemicals Wiley-Liss New York 77–126

    Google Scholar 

  • JD Coates J Woodward J Allen J Philp DR Lovley (1997) ArticleTitleAnaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments Appl. Environ. Microbiol. 63 3589–3593 Occurrence Handle1:CAS:528:DyaK2sXmtVKhtbo%3D

    CAS  Google Scholar 

  • SE Dyksterhouse JP Gray RP Herwig JC Lara JT Staley (1995) ArticleTitleCycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments Int. J. Syst. Bacteriol. 45 116–123 Occurrence Handle1:STN:280:DyaK2M7mtFagtw%3D%3D Occurrence Handle10.1099/00207713-45-1-116

    Article  CAS  Google Scholar 

  • S El Fantroussi L Verschuere W Verstraete EM Top (1999) ArticleTitleEffect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles Appl. Environ. Microbiol. 65 982–988 Occurrence Handle1:CAS:528:DyaK1MXhslWkt70%3D

    CAS  Google Scholar 

  • AD Geiselbrecht BP Hedlund MA Tichi JT Staley (1998) ArticleTitleIsolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget sound Cycloclasticus strains Appl. Environ. Microbiol. 64 4703–4710 Occurrence Handle1:CAS:528:DyaK1cXnvF2hsL4%3D

    CAS  Google Scholar 

  • IM Head RP Swannell (1999) ArticleTitleBioremediation of petroleum hydrocarbon contaminants in marine habitats Curr. Opin. Biotechnol. 10 234–239 Occurrence Handle1:CAS:528:DyaK1MXjvVSns7o%3D Occurrence Handle10.1016/S0958-1669(99)80041-X

    Article  CAS  Google Scholar 

  • M Ishihara M Goto S Harayama (1996) Bioremediation of oil-contaminated coastal zone N Al-Awadhi MT Balba C Kamizawa (Eds) Restoration and Rehabilitation of the Desert Environment Elsevier Amsterdam 41–48

    Google Scholar 

  • Y Kasai H Kishira S Harayama (2002) ArticleTitleBacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment Appl. Environ. Microbiol. 68 5625–5633 Occurrence Handle1:CAS:528:DC%2BD38Xos1ajsb8%3D

    CAS  Google Scholar 

  • SJ MacNaughton JR Stephen AD Venosa GA Davis YJ Chang DC White (1999) ArticleTitleMicrobial population changes during bioremediation of an experimental oil spill Appl. Environ. Microbiol. 65 3566–3574 Occurrence Handle1:CAS:528:DyaK1MXltVOltr0%3D

    CAS  Google Scholar 

  • JP Meador JE Stein WL Reichert U Varanasi (1995) ArticleTitleBioaccumulation of polycyclic aromatic hydrocarbons by marine organisms Rev. Environ. Contam. Toxicol. 143 79–165 Occurrence Handle1:CAS:528:DyaK2MXps1Citb4%3D

    CAS  Google Scholar 

  • RJ Melcher SE Apitz BB Hemmingsen (2002) ArticleTitleImpact of irradiation and polycyclic aromatic hydrocarbon spiking on microbial populations in marine sediment for future aging and biodegradability studies Appl. Environ. Microbiol. 68 2858–2868 Occurrence Handle1:CAS:528:DC%2BD38XksVWqsbs%3D Occurrence Handle10.1128/AEM.68.6.2858-2868.2002

    Article  CAS  Google Scholar 

  • P Morgan RJ Watkinson (1989) ArticleTitleHydrocarbon degradation in soils and methods for soil biotreatment Crit. Rev. Biotechnol. 8 305–333 Occurrence Handle1:CAS:528:DyaL1MXltleisrY%3D Occurrence Handle10.3109/07388558909148196

    Article  CAS  Google Scholar 

  • G Muyzer EC Waal Particlede AG Uitterlinden (1993) ArticleTitleProfiling of complex microbial populations by denaturing gradient gel␣electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA Appl. Environ. Microbiol. 59 695–700 Occurrence Handle1:CAS:528:DyaK3sXit1Kktrk%3D

    CAS  Google Scholar 

  • WFM Röling MG Milner DM Jones K Lee F Daniel RP Swannell IM Head (2002) ArticleTitleRobust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation Appl. Environ. Microbiol. 68 5537–5548 Occurrence Handle10.1128/AEM.68.11.5537-5548.2002 Occurrence Handle1:CAS:528:DC%2BD38Xos1ajsL4%3D

    Article  CAS  Google Scholar 

  • J Sambrook EF Fritsch T Maniatis (1989) Molecular Cloning: A Laboratory Manual EditionNumber2 Cold Spring Harbor Laboratory Cold Spring Harbor

    Google Scholar 

  • RR Sokal CD Michener (1958) ArticleTitleA statistical method for evaluating systematic relationships University of Kansas Science Bulletin 28 1409–1438

    Google Scholar 

  • GD Sprott SF Koval CA Schnaitran (1994) Cell fractionation P Gerhardt RGE Murray WA Wood NR Krieg (Eds) Methods for general and molecular bacteriology American Society for Microbiology Washington DC 72–103

    Google Scholar 

  • RJ Steffan J Goksoyr AK Bej RM Atlas (1998) ArticleTitleRecovery of DNA from soils and sediments Appl. Environ. Microbiol. 54 2908–2915

    Google Scholar 

  • JR Stephen YJ Chang YD Gan A Peacock SM Pfiffner MJ Barcelona DC White SJ Macnaughton (1999) ArticleTitleMicrobial characterization of a JP-4 fuel-contaminated site using a combined lipid biornarker/polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)-based approach Environ. Microbiol. 1 231–241 Occurrence Handle1:CAS:528:DyaK1MXkt1ert74%3D Occurrence Handle10.1046/j.1462-2920.1999.00030.x

    Article  CAS  Google Scholar 

  • RP Swannell K Lee M McDonagh (1996) ArticleTitleField evaluations of marine oil spill bioremediation Microbiol. Rev. 60 342–365 Occurrence Handle1:CAS:528:DyaK28XktVejtbo%3D

    CAS  Google Scholar 

  • Z Wang M Fingas S Blenkinsopp G Sergy M Landriault L Sigouin (1998) ArticleTitleComparison of oil composition changes due to biodegradation and physical weathering in different oils J. Chrormatogr. A 809 89–107 Occurrence Handle1:CAS:528:DyaK1cXjsVegsLo%3D Occurrence Handle10.1016/S0021-9673(98)00166-6

    Article  CAS  Google Scholar 

  • K Watanabe M Teramoto H Futamata S Harayama (1998) ArticleTitleMolecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge Appl. Environ. Microbiol. 64 4396–4402 Occurrence Handle1:CAS:528:DyaK1cXnt1Wqu70%3D

    CAS  Google Scholar 

  • K Watanabe (2001) ArticleTitleMicroorganisms relevant to bioremediation Curr. Opin. Biotechnol. 12 237–241 Occurrence Handle1:CAS:528:DC%2BD3MXkt12lu78%3D Occurrence Handle10.1016/S0958-1669(00)00205-6

    Article  CAS  Google Scholar 

  • J Zhou MA Bruns JM Tiedje (1996) ArticleTitleDNA recovery from soils of diverse composition Appl. Environ. Microbiol. 62 316–322 Occurrence Handle1:CAS:528:DyaK28XovVCnsw%3D%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyasaka, T., Asami, H. & Watanabe, K. Impacts of Bioremediation Schemes on Bacterial Population in Naphthalene-Contaminated Marine Sediments. Biodegradation 17, 227–235 (2006). https://doi.org/10.1007/s10532-005-5018-9

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-005-5018-9

Keywords

Navigation